1. 氨基酸、蛋白質與酵素、維生素及輔脢之結構與功能.

- 核甘酸與核酸結構、DNA複製與修補、基因表現與 調控及蛋白質合成
- 中間代謝及調控(包括醣類代謝、脂肪酸氧化及含氮化 合物代謝、呼吸鏈及氧化磷酸化作用、賀爾蒙作用及訊 號傳遞等

- 1. Biochemistry (5th ed.) Geoffery L. Zubay. Mc Graw-Hill. 1998.
- 2. Harper's Biochemistry (24th ed.) Robert K. Murray, Daryl K. Granner. Mayers & Rodwell Prentice-Hall. 1996.
- 3. Biochemistry (4th ed.) Lubert Stryer. W. H. Freeman and Co. 1995.
- 4. Biochemistry (2nd ed.) C. K. Mathews and K. E. van Holde. Benjamin/Cummings 1996.
- 5. Principles of Biochemistry (2nd ed.) Albert, L. Lehninger, David, L. Nelson Michael, M. Cox. Worth Publishers. 1993.

Amino acids, peptides, and proteins

α -Amino acid (residue)

Common structure

- α-carbon (chiral center)
 - L-amino acid and D-amino acid
 - Proteins are made exclusively from L-form a.a.
 - Free D-serine, D-glutamate in brain tissue
 - D-alanine and D-glutamate in cell walls of gram+ bacteria
- Acid group (carboxyl group)
- Amino group
- Functional group, side chain, R group (chemical property)
 - Nonpolar aliphatic (hydrophobic)
 - Aromatic
 - Polar, uncharged
 - Negatively charged
 - Positively charged

Hydrophobic R groups

Aromatic R groups

Lambert-Beer Law

Absorbance (A) = $\log(I_0/I) = \varepsilon c/$

 ε : molar extinction coefficient \rightarrow A \propto concentration (c)

 $\mathcal{E}_{280 \text{ nm}}$: Trp > Tyr >> Phe

Wavelength (nm)

260 270 280 290 300 310

0

230

240

250

Polar, hydrophilic R groups

Charged R groups

Amino acids

- Asparagine (天門冬醯胺)
- Cysteine (半胱胺酸)
- Leucine (白胺酸)
- Glycine (甘胺酸)
- Tyrosine (酪胺酸)
- Aspartate (天門冬酸)
- Alanine (丙胺酸)
- Valine (纈胺酸)
- Serine (絲胺酸)

- Phenylalanine (苯丙胺酸)
- Arginine (精胺酸)
- Lysine (離胺酸)
- Histidine (組織胺酸)
- Proline (脯胺酸)
- Tryptophan (色胺酸)
- I soleucine (異白胺酸)
- Methionine (甲硫胺酸)
- Threonine (酥胺酸)
- Glutamine (数 胺 醯 胺)

Nonstandard amino acids

- Derived from standard amino acid
 - 4-hydroxyproline, 5-hydroxylysine
 - Collagen
 - Selenocysteine
 - Glutathione peroxidase (GSH oxidation)
 - Ornithine and citrulline
 - Urea cycle

If only one amino acid (a.a.) begins with a certain letter, that letter is used

 $\underline{Cys}teine = Cys = C$ $\underline{His}tidine = His = H$ $\underline{Isoleucine} = \mathbf{Ie} = \mathbf{I}$ $\underline{Methionine} = Met = M$ $\underline{Serine} = Ser = S$ Valine = Val = V

If more than one a.a. begins with a certain letter, that letter is assigned to the most commonly occurring one

 $\frac{Alanine}{Glycine} = Ala = A$ $\frac{Glycine}{Glycine} = Gly = G$ $\frac{Leucine}{Leucine} = Leu = L$ $\frac{Proline}{Prol} = Pro = P$ Threonine = Thr = T

Phonetically suggestive

Phenylalanine ("Fenylalanine") = Phe = F

Arginine ("aRginine") = Arg = R

Tyrosine ("tYrosine") = Tyr = Y

Tryptophan (double ring in the molecule) = Trp = W

A letter close to the initial is used <u>Aspartic acid (near A) = Asp = D</u> <u>Asparagine (contains N) = Asn = N</u> <u>Glutamic acid (near G) = Glu = E</u> <u>Glutamine ("Q-tamine") = Gln = Q</u> Lysine (near L) = Lys = K

Chemical properties of A.A.

Can act as an acid or a base

- Zwitterion (zwitterionic)
- Amphorlyte (amphorteric)
- Dipolar ion
- Min. 2 proton yielding groups per a.a.

$$\begin{array}{cccc} H & H & H & H & H & H & H \\ R - C - COOH & H & R - C - COO & H & H & R - C - COO \\ I & H & H & H & H & H \\ NH_3^+ & H^+ & NH_3^+ & H^+ & NH_2 \end{array}$$
Net charge:
+ 1 & 0 & -1

*K*_a: dissociation constant

CH₃COOH
$$\iff$$
 H⁺ + CH₃COO⁻
HA \iff H⁺ + A⁻
 $\mathcal{K}_{eq} = \frac{[H^+][A^-]}{[HA]} = \mathcal{K}_a$
兩邊倒數, 取 log $\log \frac{[HA]}{[H^+][A^-]} = \log \frac{1}{\mathcal{K}_a}$
At \mathcal{K}_{eq} [HA] = [A⁻] pH = p \mathcal{K}_a (p_ = - log])
 $pH = p\mathcal{K}_a + \log \frac{[A^-]}{[HA]}$

Titration curve of Gly

- Two buffer zones
- No ionizing R group.
- Net charge and pH relationship
 - I soelectric point
 - I soelectric pH (pI)

What is isoelectric point (pl)?

- pI = The pH at which the net charges equal zero
- At its pl, the amino acid will no longer move in an electrical field

When pH < pI, the a.a. is positively charged When pH > pI, the a.a. is negatively charged

Titration curve of His

- An ionizable R group (imidizole)
- pK_R near 7

Monomer \rightarrow Polymer

Amino Acid Peptide Protein

The Peptide Bond

Peptide bond (covalent)

- Two amino acids
- 2. Removal of one water molecule (condensation)
- 3. Formation of the CO-NH

NutraSweet (aspartame)

p. 127

- Artificial sweetener
- Dipeptide (made of 2 amino acids)
- A.A. sequence: Aspartate + phenylalanine

Chemical properties of peptides

Determined by

- 1. Free α -amino
- **2**. Free α -carboxyl
- 3. Nature and number of ionizable R groups

At pH 7, R-group only...

$$\begin{array}{c} \overset{\stackrel{\bullet}{\mathbf{N}}\mathbf{H}_{3}}{\operatorname{Ala}} & \overset{\stackrel{\bullet}{\mathbf{CH}}-\mathbf{CH}_{3}}{\operatorname{O}=\mathbf{C}} \\ & \overset{\stackrel{\bullet}{\mathbf{N}}\mathbf{H}}{\operatorname{Glu}} & \overset{\stackrel{\bullet}{\mathbf{CH}}-\mathbf{CH}_{2}-\mathbf{CH}_{2}-\mathbf{COO^{-}} \\ & \overset{\stackrel{\bullet}{\mathbf{O}}=\mathbf{C}}{\operatorname{O}=\mathbf{C}} \\ & \overset{\stackrel{\bullet}{\mathbf{N}}\mathbf{H}}{\operatorname{Gly}} & \overset{\stackrel{\bullet}{\mathbf{CH}}_{2}}{\operatorname{O}=\mathbf{C}} \\ & \overset{\stackrel{\bullet}{\mathbf{N}}\mathbf{H}}{\operatorname{I}} \\ \operatorname{Lys} & \overset{\stackrel{\bullet}{\mathbf{CH}}-\mathbf{CH}_{2}-\mathbf{CH}_{2}-\mathbf{CH}_{2}-\mathbf{CH}_{2}-\overset{\stackrel{\bullet}{\mathbf{N}}\mathbf{H}_{3}}{\operatorname{COO^{-}}} \end{array}$$

Working with proteins

- From biological tissue (*in vivo*)
- Genetic engineering (cloning)
- Chemical synthesis (*in vitro*)
 - In the reverse order (from C to N)
 - Not very efficient
 - A protein of 100 a.a. = days by machine vs. 5 sec in bacteria

Column Chromatography

- Stationary phase + mobile phase By charge, size, binding affinity difference
 - Size exclusion or gel filtration
 - Stokes radius (function of mass and shape)
 - I on exchange
 - Affinity (binding specificity)
 - His-tag fusion protein and Ni²⁺-column (Co²⁺)
 - GST-fusion protein and GST column
 - Ag-Ab

Porous polymer beads Negatively charged beads

2 3

+2)

Electrophoresis

SDS-PAGE

- Sodium dodecyl sulfate (detergent)
 - Denature protein (rod-like structure)
 - Confer negative charge to protein
- <u>Polyacrylamide gel = pores matrix (provide friction)</u>
- Separate protein according to molecular weight

Others

- I soelectric focusing (IEF)
 - Separate proteins according to pl
- 2D electrophoresis
 - pl first, molecular weight second
 - Often used in proteomics

Activity vs. Specific Activity

Activity = "red marble"

A Purification Table for a Hypothetical Enzyme*

After purification

Fig	5-23,
p.	137

	Fraction	Total		
Procedure or step	volume (ml)	protein (mg)	Activity (units)	Specific activity (units/mg)
 Crude cellular extract 	1,400	10,000	100,000	10
Precipitation with ammonium sulfate	280	3,000	96,000	32
 Ion-exchange chromatography 	90	400	80,000	200
 Size-exclusion chromatography 	80	100	60,000	600
 Affinity chromatog- raphy 	6	3	45,000	15,000

Peptide sequencing (I)

Peptide sequencing (II)

- N-terminal labeling + acid hydrolysis
 - Identify N-terminal residue (DNB-a.a.).
 - Determine # of polypeptides in a protein

Peptide sequencing (III)

- N-terminal labeling and removal (Edman degradation)
 - Automated sequencer (10 years vs. 2 days)
 - Efficiency vs. polypeptide length

Steps in protein sequencing

- 1. Breaking disulfide bond
- 2. Cleaving the polypeptide chain
- 3. Purifying each fragment
- 4. Sequencing of peptides
- 5. Ordering peptide fragments
- 6. Locating disulfide bonds

- The entire protein complement encoded by an organism's DNA
 - Protein mixtures from cells
 - 2-D gel electrophoresis
 - Extract individual protein spot from gel
 - Sequenced by mass spectrometry
 - Compare with genomic sequence to identify the protein
 - I dentify new protein and changes in protein due to modification. 32

Molecular evolution

- Molecular evolution
 - Premise (Emile Zuckerkandl and Linus Pauling, mid 1960's)
 - If 2 organisms are close related, the sequences of their genes and proteins should be similar
- Residue variation of a given protein
 - Residues essential for function
 - Conserved over time
 - Residues non-essential for function
 - Tend to vary over time
 - Variation
 - Random
 - Non-random (conservative), p. 108
 - Substitute with a.a. of similar chemical properties
- Homologous proteins (homologs)
 - Members of a family of proteins that share a common ancestor (see also p. 37)
 - Paralogs
 - 2 proteins within a family (homologs) are present in the same species
 - Orthologs
 - From different species