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Protein Structures
1. Primary structure

• Amino acid sequence
• Edman degradation, MS, deduce from DNA 

2. Secondary structure
• Recurring structural pattern
• Circular dichroism (CD, 圓二色極化光譜儀)

3. Tertiary structure
• 3D folding of a polypeptide chain
• X-ray crystallography, NMR

4. Quaternary structure
• Subunits arrangement within a proteinFig 5-16
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The 3-D structure of proteins

Protein conformation in space
Including long-range interactions
Determined by:

Primary (and secondary) structures
Interactions among R groups
Disulfide bond and weak interactions
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Protein stability
Unfolded (denatured)

High degree of conformational entropy
H-bond of polypeptide with solvent (H2O)

Folded (native)
Lowest free energy
Stabilized by disulfide bond (covalent) and weak (non-covalent) 
interactions:

Weak interactions
Van der Waals interaction
H-bond
Hydrophobic
Ionic

In general, the protein conformation with lowest 
free energy is the one with the max. no. of weak 
interactions.
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Peptide bond
1. OC-NH is shorter
2. Coplanar peptide group 
3. Trans configuration (O vs. H)

Electrons resonance (partial sharing) between 
the carbonyl O and the amide N. (electric dipole)

OC-NH can not rotate
Limited rotation for Cα-C (ψ, psi) and N-Cα (φ, phi)
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Protein secondary structure

Ramachandran plots

Local conformation, regular backbone pattern
Restricted ψ and φ in 2o structures
Determined by primary structure

α-helix (e.g. α-keratin in hair)
β-sheet (e.g. silk fibroin – layers of β-sheets)
β-turn

Parallel
β-sheet

Right-handed 
α-helix

Collagen 
triple helix

Anti-parallel
β-sheet
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α-helix

1 turn

Box 6-1

-- R
R--

A right-handed α-helix:
3.6 a.a. per turn
5.4 Å (1 Å = 0.1 nm) per turn
R groups extended outward
perpendicular to the helical axis
H-bonding between adjacent turns

H-bond between the -CO of residue (i) 
and the -NH of residue (i+3).
2 H-bonds per residue
3 or 4 H-bonds per turn
Provide stability 
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α-helix constraints

H
CH

H3N+ C   O-

O

CH2

CH

H3N+ C   O-

O

CH2

CH2

1. Electrostatic interactions of Ri and Ri+1

2. Size of the R group
3. Interactions between Ri and Ri+3 or Ri+4

4. Pro and Gly
5. End residues (electric dipole)

+

-
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Electric dipole of an α-helix
Peptide bond dipole
Helix dipole
End residues and 
helix stability

Fig 6-6
Fig 6-2a +

-
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β-conformation
Zigzag, extended protein chain, with the R groups 
alternating above and below the backbone. 
Side by side β-conformation β-sheet

H-bonds between adjacent peptide chain (backbone).
Parallel or antiparallel orientations

Silk fibroin – layers of β-sheets 

parallel antiparallel
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β-turn
A 180o turn involving 4 a.a.
H-bond between -CO of the 1st a.a. and the -NH of the 
4th a.a.
Common a.a.

Gly (small and flexible, type II β-turn)
Pro (peptide bonds involving the imino N in cis configuration)

Fig 6-8a
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Occurrence in 2o structure
Relative probability of a.a.

Fig 6-10
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Circular Dichroism Spectroscopy
Determine the content of 2o structure of a protein

http://www-structure.llnl.gov/cd/cdtutorial.htm
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Membrane proteins Lehninger 4th ed.

Membrane spanning protein (hydropathy plot, p. 377)
α helix type channels (helical wheel diagram, p. 393)
β barrel porins (p. 378)
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Classification (p. 170)
Fibrous proteins (e.g. Table 6-1)

Long strands or sheets
Consist of a single type of 2o structure
Function in structure, support, protection
α-keratin, collagen

Globular proteins (e.g. Table 6-2)
Spherical or globular shape
Contain several types of 2o structure
Function in regulation
Myoglobin, hemoglobin
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Structure of hair

Fig 6-11, p. 171

α-keratin: hair, wool, nails, claws, quills, horns, 
hooves, and the outer layer of skin

Monomer

Dimmer
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Collagen
Tendons, bone, cartilage, skin, and cornea
Primary sequence:

Gly-X-Pro (HyPro)
Repeating tripeptide unit

Structure 
Monomer (α chain)

Left-handed helix, 3 a.a. per turn
Trimer: coiled-coil (tensile strength).

Stabilized by H-bond
Crosslink between triple helixes

Genetic defect:
Osteogenesis imperfecta

Abnormal bone formation in babies
Ehlers-Danlos syndrome

Loose joint

tropocollagen

collagen
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More on Collagen …Harper’s 26th, p. 38-39.

Procollagen (a larger precursor polypeptide)
Post-translational modification

Pro, Lys Hydroxyl Pro, Lys (cofactor = ascorbic acid)
Provide H-bond that stablizes the mature protein
Scurvy: a dietary deficiency of Vit C

Central portion triple helix (procollagen collagen)
The N-, and C-terminal portions are removed

Certain Lys are modified by lysyl oxidase (a copper-
containing protein)

Crosslink between polypeptides increased strength and 
rigidity.
Menke’s syndrome: a dietary deficiency of the copper
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Denature and unfolding

No function

Fully 
functional

Loss of function due the structural disruption
Cooperative process
Denatured conformation: random but partially folded
No covalent bonds in the polypeptide are broken !!

Denaturing agent
Heat (H-bond)
Extreme pH (change ionic interaction)
Miscible organic solvent (hydrophobic interactions)

Alcohol, acetone
Certain solutes (hydrophobic interactions)

Urea, guanidino hydrochloride (Gdn HCl), detergent
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The prion disease
Spongiform encephalopathies
Disease caused by a protein (prion)
Proteinaceous infectious particle
Related diseases:

Mad cow disease
Kuru
Creutzfeldt-Jakob disease (human)
Scrapie (sheep)

Misfolded prion

PrPC

(normal)
PrPSC

(infectious)
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Protein Function

Myoglobin and Hemoglobin
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O2 binding to Heme
Heme = organic ring (porphyrin) + Fe2+

Free heme Fe2+ (binds O2) vs. Fe3+ (does not bind)
O2 rich blood (bright red) vs. O2 depleted blood (dark purple)
CO, NO binds with higher affinity than O2
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Protein-ligand interaction
p. 207P + L          PL

Ka: association constant 
(M-1)

Ka =
[PL]

[P] [L]

= [PL]
[PL] + [P]

θ = Binding sites occupied
Total binding sites

[L]
[L] + 1/Ka

θ =
[L]

[L] + Kd
= Kd: dissociation constant 

(M)

Ka [L] = [PL]
[P]
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Ligand binding and Kd
When [L] = Kd, 50% ligand-binding sites are occupied
Kd: dissociation constant
Kd = [L] at half-saturation
Affinity ↑, Kd ↓

θ =
[L]

[L] + Kd

Hyperbola

Fig 7-4a
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O2 binding of Mb

θ =
pO2

pO2 + P50

θ =
[L]

[L] + Kd
O2 binds tightly to Mb
Good for O2 storage
Not good for O2 transport

Fig 7-4b

tissues lungs

0.26 kPa

1 atm = 105 Pa = 100 kPa

pO2, air = 20 kPa
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Structure affects Kd
Kd for O2 Kd for CO

Free heme 1x 1/20,000x
Heme in Mb 1x 1/200x

Steric hindrance
Distal His, (His64 of Mb)

Molecular motion (breathing)
O2 in/out buried cavity
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Mb vs. Hb
O2 transport
Found in erythrocyte
Hb = tetramer

4 x (polypeptide chain + heme)
Hb m.w. = 64.5 KDa
Interactions between 
subunits (tetramer)

O2 storage 
In muscle tissue
Mb = monomer

1 polypeptide chain 
(153 a.a.) + 1 heme

Mb m.w. = 16.7 kDa

Fig 7-10

Sequence vs. structure homology

Fig 7-3
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Hb has 2 conformations
T state R state

-O2 structure stable unstable
+O2 unstable stable
Kd (O2) large small
O2 binding to T triggers a conformational change to R

Fig 7-10
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Hb–O2 binding curve
A sigmoid (S-shape) binding curve
Permit highly sensitive response to small change in 
pO2 or [ L]

θ = 0.96

θ = 0.64

Fig 7-12
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O2 binding to Hb
Cooperativity

One subunit binding of O2 affects Kd of the 
adjacent subunits
4 x (subunit + O2)

1st O2 binds Hb (T) weakly, initiate T R
2nd O2 binds Hb (T R) with higher affinity
3rd O2 binds Hb (T R) with even higher affinity
4th O2 binds Hb (R) with highest affinity

S-shaped (sigmoid) binding curve – multimer only
Allosteric protein

Homotropic: modulator = ligand (substrate)
e.g. O2, CO

Heterotropic: modulator ≠ ligand (substrate)
e.g. H+, CO2, BPG
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Quantification
P + n L          PLn Slope = n (Hill coefficient)

n > 1, + Coop.
n = 1, no Coop.
n < 1, - Coop.

[PLn]Ka = [P] [L]n

θ = Binding sites occupied
Total binding sites

[L]n

[L]n + Kd

=

=
θ

1 - θ
[L]n

Kd

θ
1 - θ

log

=θ
1 - θ n log [L] – log Kdlog

Y = ax - b
log [L]

Hill equation
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Hill plot of Mb vs. Hb
Mb: nH = 1
Hb: nH = 3

Fig 7-13
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Hb also transports H+ and CO2
Bohr effect
pH and CO2 modulate the affinity of Hb for O2

Hb binds O2 and (H+ or CO2) with inverse affinity 
Hb binds O2, H+, and CO2 at different sites 

Tissues: pH ↓ and CO2↑, O2 affinity ↓, Hb release O2
Lungs: pH ↑ and CO2 ↓, O2 affinity ↑, Hb binds more O2

In lung

In tissue
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BPG (2,3-bisphosphoglycerate)
BPG binds to ⊕ a.a. in the cavity between β subunits in Hb (T state)

BPG stabilize T state ⇒ O2 affinity ↓
[BPG] at sea level vs. high altitude
Fetal Hb – needs to have a higher O2 affinity than mother’s Hb

Fetal Hb : α2γ2

[BPG] Ø, after storage, transfusion…
People suffering from hypoxia, [BPG]↑…
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CO intoxication (Box 5-1)
CO has a higher affinity for Hb

Smoker has higher level of COHb (3~15%) vs. < 1% 
Binding of CO to Hb increase the O2 affinity of Hb

O2 transport become less efficient (Fig 2)
Suspected CO intoxication

Rapid evacuation
Administer 100% O2

Lehninger 4th ed.
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Homozygous allele for the β subunit gene
Hb A (Glu6) vs. Hb S (Val6) on β subunits surface 
“Sticky” hydrophobic contacts
deoxyHb S: insoluble and form aggregates

Heterozygous: malaria resistance
Anemia or Malaria ?

HbA

Sickle-cell anemia
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