Protein Structures

- 1. Primary structure
 - Amino acid sequence
 - Edman degradation, MS, deduce from DNA
- 2. Secondary structure
 - Recurring structural pattern
 - Circular dichroism (CD, 圓二色極化光譜儀)
- 3. Tertiary structure
 - 3D folding of a polypeptide chain
 - X-ray crystallography, NMR
- 4. Quaternary structure

Fig 5-16

Subunits arrangement within a protein

The 3-D structure of proteins

- Protein conformation in space
- Including *long-range* interactions
- Determined by:
 - Primary (and secondary) structures
 Interactions among R groups
 Disulfide bond and weak interactions

Protein stability

Unfolded (denatured)

- High degree of conformational entropy
- H-bond of polypeptide with solvent (H₂O)

Folded (native)

- Lowest free energy
- Stabilized by disulfide bond (covalent) and weak (non-covalent) interactions:
 - ✓ Weak interactions
 - ✓ Van der Waals interaction
 - H-bond
 - Hydrophobic
 - ✓ I onic

In general, the protein conformation with lowest free energy is the one with the max. no. of weak interactions.

Peptide bond

- 1. OC-NH is shorter
- 2. Coplanar peptide group
- 3. Trans configuration (O vs. H)

- Electrons resonance (partial sharing) between the carbonyl O and the amide N. (electric dipole)
 - OC-NH can not rotate
 - Limited rotation for C_{α} -C (ψ_{\prime} psi) and N-C_{α} (ϕ_{\prime} phi)

Protein secondary structure

Collagen

triple helix

5

- Local conformation, regular backbone pattern
- Restricted ψ and ϕ in 2° structures
- Determined by primary structure
 - 🗸 α-helix (e.g. α-keratin in hair)
 - ✓ β-sheet (e.g. silk fibroin layers of β-sheets)

 α -helix

A right-handed α -helix:

- 3.6 a.a. per turn
- 5.4 Å (1 Å = 0.1 nm) per turn
- R groups extended outward perpendicular to the helical axis
- *H-bonding* between adjacent turns
 - H-bond between the -CO of residue (i) and the -NH of residue (i+3).
 - > 2 H-bonds per residue
 - 3 or 4 H-bonds per turn
 - Provide stability

Box 6-1

α -helix constraints

- 1. Electrostatic interactions of R_i and R_{i+1}
- 2. Size of the R group
- 3. Interactions between R_i and R_{i+3} or R_{i+4}
- 4. Pro and Gly
- 5. End residues (electric dipole)

Electric dipole of an α -helix

- Peptide bond dipole
- Helix dipole
- End residues and helix stability

Fig 6-2a

β -conformation

- Zigzag, extended protein chain, with the R groups alternating above and below the backbone.
- Side by side β -conformation $\rightarrow \beta$ -sheet
 - ✓ H-bonds between adjacent peptide chain (backbone).
 - ✓ Parallel or antiparallel orientations
- Silk fibroin layers of β-sheets

β-turn

- A 180° turn involving 4 a.a.
- H-bond between -CO of the 1st a.a. and the -NH of the 4th a.a.
- Common a.a.
 - \checkmark Gly (small and flexible, type II β -turn)
 - ✓ Pro (peptide bonds involving the imino N in *cis* configuration)

Occurrence in 2° structure

Relative probability of a.a.

Circular Dichroism Spectroscopy

Determine the content of 2° structure of a protein

http://www-structure.llnl.gov/cd/cdtutorial.htm

Membrane proteins

Membrane spanning protein (hydropathy plot, p. 377)

Lehninger 4th ed.

- \checkmark α helix type channels (helical wheel diagram, p. 393)
- β barrel porins (p. 378)

Classification (p. 170)

- Fibrous proteins (e.g. Table 6-1)
 - Long strands or sheets
 - Consist of a single type of 2° structure
 - Function in structure, support, protection
 - α-keratin, collagen
- Globular proteins (e.g. Table 6-2)
 - Spherical or globular shape
 - ✓ Contain several types of 2° structure
 - ✓ Function in regulation
 - Myoglobin, hemoglobin

Structure of hair

$\alpha\mbox{-keratin: hair, wool, nails, claws, quills, horns, hooves, and the outer layer of skin$

Cells

Intermediate

filament

Protofibril Protofilament

Fig 6-11, p. 171

Collagen

- Tendons, bone, cartilage, skin, and cornea
- Primary sequence:
 - ✓ Gly-X-Pro (HyPro)
 - Repeating tripeptide unit
- Structure
 - Monomer (α chain)
 - ✓ Left-handed helix, 3 a.a. per turn
 - Trimer: coiled-coil (tensile strength).
 - ✓ Stabilized by H-bond
 - \checkmark Crosslink between triple helixes
- Genetic defect:
 - Osteogenesis imperfecta
 - \checkmark Abnormal bone formation in babies
 - Ehlers-Danlos syndrome
 - ✓ Loose joint

More on Collagen ... Harper's 26th, p. 38-39.

Procollagen (a larger precursor polypeptide)

- Post-translational modification
 - ✓ Pro, Lys \rightarrow Hydroxyl Pro, Lys (cofactor = ascorbic acid)
 - ✓ Provide H-bond that stablizes the mature protein

✓ Scurvy: a dietary deficiency of Vit C

✓ Central portion \rightarrow triple helix (procollagen \rightarrow collagen)

✓ The N-, and C-terminal portions are removed

- Certain Lys are modified by lysyl oxidase (a coppercontaining protein)
 - ✓ Crosslink between polypeptides → increased strength and rigidity.
 - ✓ Menke's syndrome: a dietary deficiency of the copper

Denature and unfolding

- Loss of function due the structural disruption
 - ✓ Cooperative process
 - Denatured conformation: random but partially folded
 - No covalent bonds in the polypeptide are broken !!
- Denaturing agent
 - ✓ Heat (H-bond)
 - Extreme pH (change ionic interaction)
 - Miscible organic solvent (hydrophobic interactions)
 - Alcohol, acetone
 - Certain solutes (hydrophobic interactions)
 - Urea, guanidino hydrochloride (Gdn HCl), detergent

The prion disease

- Spongiform encephalopathies
- Disease caused by a protein (prion)
- Proteinaceous infectious particle
- Related diseases:
 - ✓ Mad cow disease
 - 🗸 Kuru
 - ✓ Creutzfeldt-Jakob disease (human)
 - ✓ Scrapie (sheep)
- Misfolded prion

PrP^c (normal) PrP^{SC} (infectious)

Protein Function

Myoglobin and Hemoglobin

O₂ binding to Heme

- Heme = organic ring (porphyrin) + Fe²⁺
- Free heme \rightarrow Fe²⁺ (binds O₂) vs. Fe³⁺ (does not bind)
- O₂ rich blood (bright red) vs. O₂ depleted blood (dark purple)
- CO, NO binds with higher affinity than O₂

Protein-ligand interaction

$$\bullet P + L \iff PL$$

p. 207

$$K_{a} = \frac{[PL]}{[P] [L]} \qquad K_{a}: \text{ association constant}$$

$$K_{a} [L] = \frac{[PL]}{[P]}$$

$$K_{a} [L] = \frac{[PL]}{[P]}$$

$$H_{a} = \frac{[PL]}{[P]}$$

$$H_{a} = \frac{[PL]}{[P]}$$

$$H_{a} = \frac{[PL]}{[P] + [P]}$$

Ligand binding and K_d

- When [L] = K_d, 50% ligand-binding sites are occupied
- K_d: dissociation constant
- K_d = [L] at half-saturation
- Affinity \uparrow , $K_d \downarrow$

O₂ binding of Mb

- O₂ binds tightly to Mb
- Good for O₂ storage
- Not good for O₂ transport

Structure affects K_d K_d for O_2 K_d for CO 1/20,000x Free heme 1x Heme in Mb 1/200x1x 0 \mathbf{Fe} Fe X Ż His E7 Phe CD1 Steric hindrance ✓ Distal His, (His⁶⁴ of Mb) His F8 Molecular motion (breathing) \checkmark O₂ in/out buried cavity 25

Mb vs. Hb

- O₂ storage
- In muscle tissue
- Mb = monomer
 - 1 polypeptide chain
 (153 a.a.) + 1 heme
- Mb m.w. = 16.7 kDa

- O₂ transport
- Found in erythrocyte
- Hb = tetramer
 - 4 x (polypeptide chain + heme)
- Hb m.w. = 64.5 KDa
- Interactions between subunits (tetramer)

Sequence vs. structure homology

26

Hb has 2 conformations

•	T state	R state
-O ₂	structure stable	unstable
+O ₂	unstable	stable
K _d (O ₂)	large	small

O₂ binding to T triggers a conformational change to R

Hb-O₂ binding curve

- A sigmoid (S-shape) binding curve
- Permit highly sensitive response to small change in pO₂ or [L]

O₂ binding to Hb

Cooperativity

- One subunit binding of O₂ affects K_d of the adjacent subunits
- \checkmark 4 x (subunit + O₂)
 - ✓ 1st O₂ binds Hb $\overline{(T)}$ weakly, initiate T → R
 - ✓ 2^{nd} O₂ binds Hb (T→R) with higher affinity
 - ✓ 3^{rd} O₂ binds Hb (T→R) with even higher affinity
 - $\checkmark 4^{\text{th}} O_2$ binds Hb (R) with highest affinity
- ✓ S-shaped (sigmoid) binding curve multimer only

Allosteric protein

Homotropic: modulator = ligand (substrate)
4.9.02, CO

✓ Heterotropic: modulator \neq ligand (substrate) ✓ e.g. H⁺, CO₂, BPG

Hill plot of Mb vs. Hb

Hb also transports H⁺ and CO₂

Bohr effect

- pH and CO₂ modulate the affinity of Hb for O₂
 - ✓ Hb binds O_2 and (H⁺ or CO_2) with inverse affinity
 - ✓ Hb binds O_2 , H⁺, and CO_2 at different sites
 - ✓ Tissues: pH \downarrow and CO₂↑, O₂ affinity \downarrow , Hb release O₂
 - ✓ Lungs: pH \uparrow and CO₂ \downarrow , O₂ affinity \uparrow , Hb binds more O₂

BPG (2,3-bisphosphoglycerate)

- BPG binds to \oplus a.a. in the cavity between β subunits in Hb (T state)
 - ✓ BPG stabilize T state \Rightarrow O₂ affinity ↓
- [BPG] at sea level vs. high altitude
- Fetal Hb needs to have a higher O₂ affinity than mother's Hb
 - ✓ Fetal Hb : $\alpha_2 \gamma_2$
- [BPG] \downarrow , after storage, transfusion...
- People suffering from hypoxia, [BPG]

CO intoxication (Box 5-1)

- CO has a higher affinity for Hb
 - ✓ Smoker has higher level of COHb (3~15%) vs. < 1%
 - ✓ Binding of CO to Hb increase the O₂ affinity of Hb
 - \checkmark O₂ transport become less efficient (Fig 2)
- Suspected CO intoxication
 - ✓ Rapid evacuation
 - ✓ Administer 100% O₂

Lehninger 4th ed.

Sickle-cell anemia

- Homozygous allele for the β subunit gene
 - ✓ Hb A (Glu⁶) vs. Hb S (Val⁶) on β subunits surface
 - "Sticky" hydrophobic contacts
 - ✓ deoxyHb S: insoluble and form aggregates
- Heterozygous: malaria resistance
- Anemia or Malaria ?

Hemoglobin S

Strand formation

Alignment and crystallization (fiber formation)