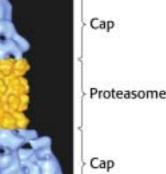
Metabolism of N-Molecules

Amino acid catabolism/degradation Amino group C-skeleton Amino acid anabolism/biosynthesis Non-essential amino acids Essential amino acids Other N containing molecules

Nucleotide synthesis and degradation de novo synthesis and Salvage pathway N-containing waste

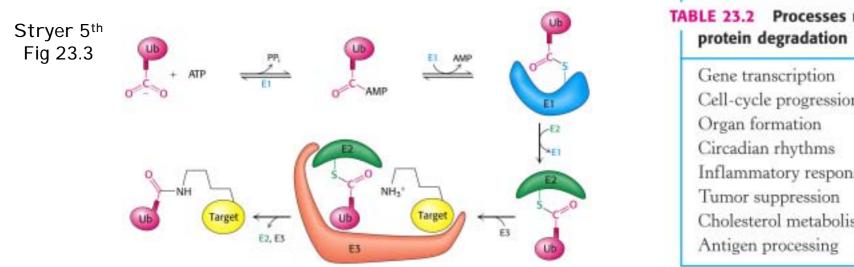
Amino acids catabolism

In animals

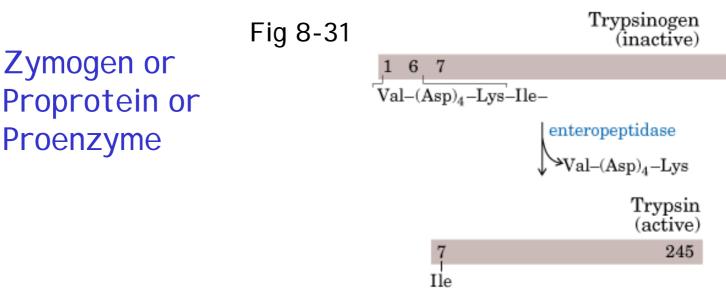

- 1) Protein turnover
 - Normal cellular protein degradation
 - ATP-independent process in lysosomes
 - Ubiquitin-tag + ATP → proteasome (p. 1066)
- 2) Dietary protein surplus
 - Amino acids can not be stored
 - Positive N balance (excess ingestion over excretion)
 - Growth and pregnancy
 - Negative N balance (output exceeds intake)
 - After surgery, advanced cancer, and kwashiorkor or marasmus
- 3) Starvation or diabetes mellitus
 - Protein is used as fuel

p. 623

Protein turnover

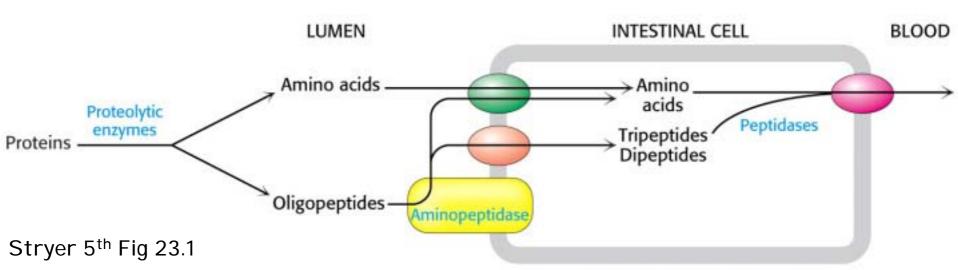

- Membrane associated protein
 - ✓ Lysosome
- Cellular protein
 - ✓ Abnormal, damaged, or regulatory proteins.
 - ✓ Ubiquitin (Ub) and proteasome
 - Ub: the death signal, covalently attached to the target protein
 - N-terminal rule: (Table 27-10)
 - Destabilizing residue: Arg, Leu
 - Stabilizing: Met, Pro
 - Cyclin destruction boxes
 - A.a. sequences that mark cell-cycle proteins for destruction
 - PEST
 - Proteins rich in Pro, Glu, Ser, and Thr.
 - Proteasome: executioner
 - ATP-driven multisubunit protease complex.
 - Proteasome product: Ub + peptides of 7-9 a.a.
 - Peptides are further degraded by other cellular proteases.

Stryer 5th Fig 23.6

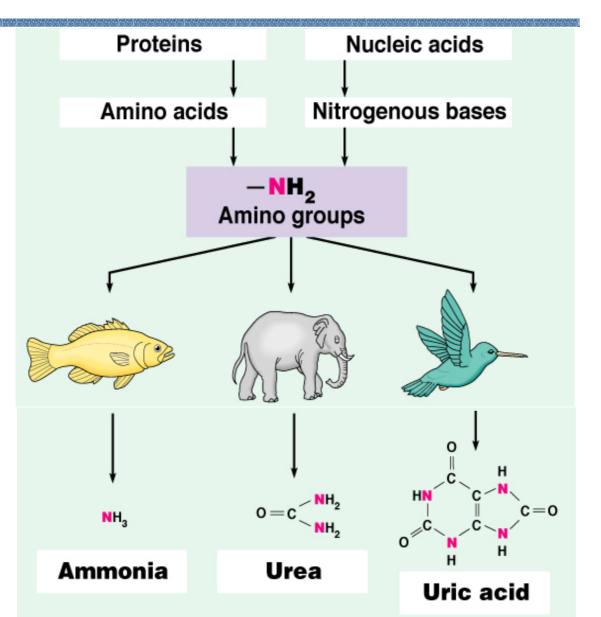

Biological function

- Human papilloma virus (HPV)
 - Encodes a protein that activates a specific E3 enzyme in ubiquitination process.
 - \checkmark E3 Ub the tumor suppressor p53 and other proteins that control DNA repair, when are then destroyed.
 - \checkmark E3 activation is observed in 90% of cervical carcinoma.
- Inflammatory response
 - \checkmark NF- κ B (transcription factor) initiates the expression of a number of the genes that take part in this process.
 - \checkmark NF- κ B normally remains inactivated by binding to an inhibitory protein, I- κ B. $(NF-\kappa B - I - \kappa B complex)$
 - ✓ Signal \rightarrow I - κ B phosphorylated \rightarrow I - κ B Ub \rightarrow release NF- κ B \rightarrow immune Strver 5th response.

	Processes regulated by legradation
Gene tra	nscription
Cell-cycl	e progression
Organ fo	rmation
Circadiar	n rhythms
Inflamm	atory response
Tumor su	uppression
Cholester	rol metabolism
Antigen	processing

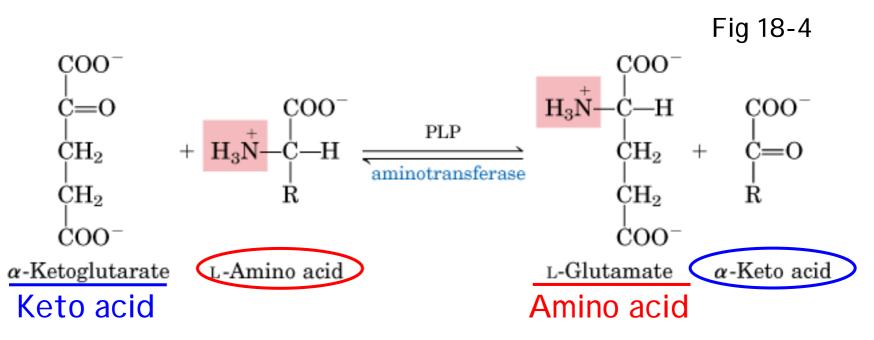

Regulatory enzymes (Review)

- Polypeptide cleavage : inactive → active
 - ✓ Pepsinogen → pepsin
 - ✓ Chymotrypsinogen → chymotrypsin
 - ✓ Trypsinogen → trypsin
 - ✓ <u>Procarboxypeptidase A(B)</u> → carboxypeptidase A(B)
- Irreversible activation → inactivate by inhibitors
 ✓ Pancreatic trypsin inhibitor (binds and inhibits trypsin)


Protein Digestion

- In stomach
 - ✓ Pepsinogen + HCl → Pepsin
 - HCI : denaturing protein exposing peptide bonds
 - Pepsin cleaves peptide bond before aromatic residues (Table 5-7)
 - ✓ Peptide fragments (7-8 residues)
- Pancreas and small intestine
 - ✓ Trypsin (C of Lys, Arg)
 - ✓ Chymotrypsin (C of aromatic a.a.)
 - ✓ Carboxypeptidase, and <u>aminopeptidase</u> → free a.a. for absorption
 - ♦ Acute pancreatitis
 - Obstruction of pancreatic secretion
 - Premature enzymes attack the pancreatic tissue

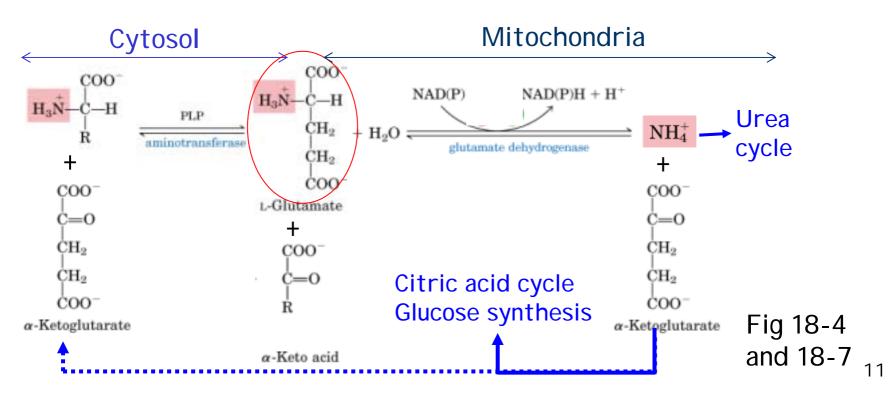
Amino acid catabolism H O I II H₃N⁺−C−C−O⁻ I Amino acid = NH₃⁺- + C skeleton Bookkeeping" Intracellular protein **Dietary protein** Amino acids C skeletons NH₄⁺ Citric Urea acid Glucose cycle cycle Fig 18-1 modified CO_2 Urea


N-containing wastes (p. 634)

p. 625, Fig 18-2(b)

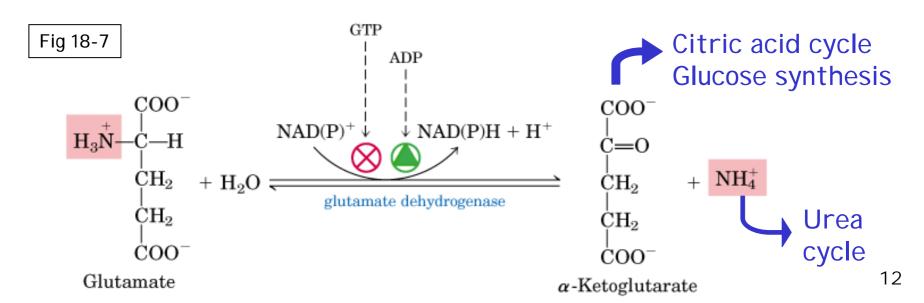
Remove α -amino group

- 1st step in liver: transamination
 - ✓ Aminotransferase or transaminase
 - ✓ Exception: proline, hydroxyproline, threonine, and lysine
- Collect amino group in glutamate form

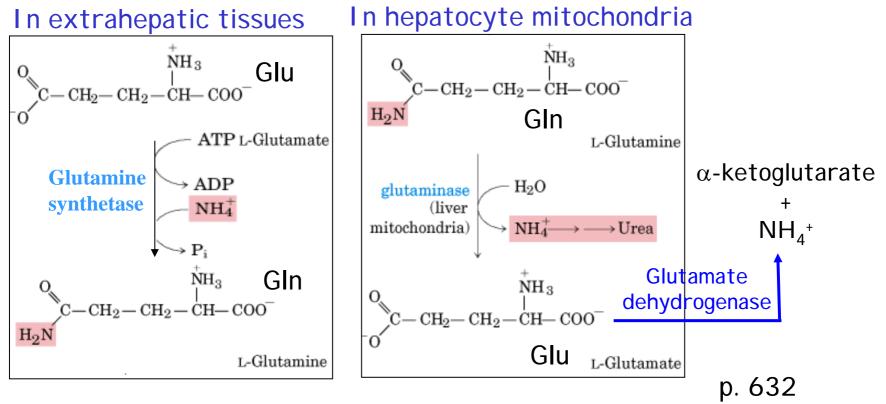

✓ Classic example of enzyme catalyzing bimolecular Ping-Pong reactions.

Aminotransferase

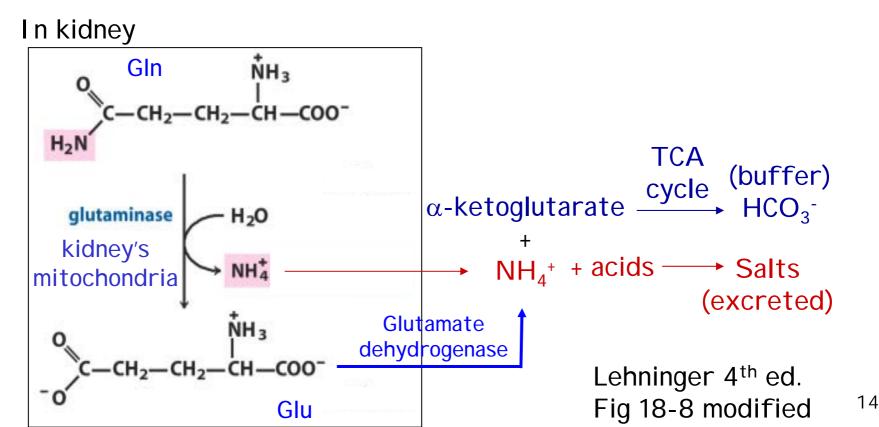
- A family of enzymes with different specificity for the amino acids.
 - ✓ Alanine aminotransferase
 - ✓ Aspartate aminotransferase
- A common *prosthetic group* (*coenzyme*):
 - ✓ PLP (pyridoxal phosphate)
 - Derived from Vit B₆
 - Transamination
 - As a carrier of amino group (accept ↔ donate)
 - Decarboxylation
 - Racimization
 - Forms enzyme-bound Schiff base intermediate.
- Medical diagnoses (Box 18-1)
 - ✓ A variety of enzymes leak from the injured cells into the bloodstream
 - Heart and liver damages caused by heart attack, drug toxicity, or infection.
 - Liver damages caused by CCl₄, chloroform, and other industrial solvent.
 - \checkmark \uparrow [Enz] in blood serum
 - SALT test (alanine aminotransferase, or GPT)
 - SAST test (aspartate ..., or GOT)
 - SCK test (serum creatine kinase)


Glu releases NH₄⁺ in liver

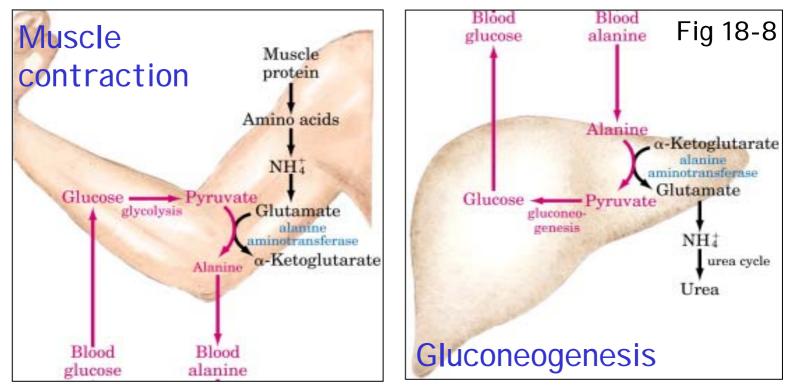
- In hepatocytes, Glu is transported from cytosol into the mitochondria.
- Glutamate dehydrogenase catalyze the oxidative deamination in mitochondria to release NH₄⁺.
- Trans-deamination


Glutamate dehydrogenase

- Operates at the intersection of N- and C- metabolism
 - ✓ Present only in hepatic mitochondria matrix
 - ✓ Requires NAD⁺ or NADP⁺
 - ✓ Allosterically regulated
 - Inhibitor: [GTP] and [ATP]
 - Activator: [GDP] and [ADP]
 - ✓ A lowering of the energy charge accelerates the oxidation of a.a.
 - ✓ Hyperinsulinism-hyperammonemia syndrome:
 - ✓ mutation in GTP binding site, permanently activated.


NH₄⁺ transport in blood (I)

- NH₄⁺ is toxic to animal tissues
- Gln is a nontoxic transport form of NH₄⁺
- Gln releases NH₄⁺ in liver and kidney mitochondria by glutaminase


Metabolic acidosis (p. 663)

- Kidney extracts little Gln from bloodstream normally
- Acidosis *increases* glutamine processing in kidney
 - ✓ NH_4^+ + metabolic acids → salts (excreted in urine)
 - ✓ α -ketoglutarate → bicarbonate (HCO_{3⁻}, buffer)

NH₄⁺ transport in blood (II)

- Glucose-alanine cycle
 - ✓ Ala transports NH_{4^+} from skeletal muscle to liver
 - \checkmark Pyruvate is recycled to glucose in liver and then returned to muscle
- Economy in energy use
 - ✓ Tissue cooperation
 - ✓ Cori cycle (glucose-lactate cycle)

N excretion

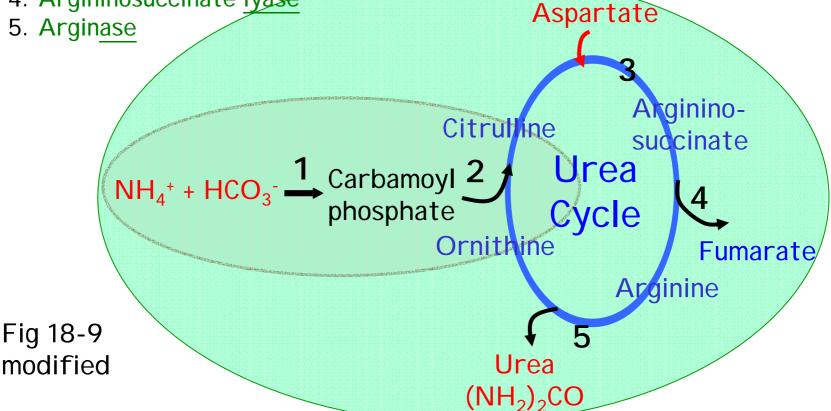
Most terrestrial animals:

- Almost exclusively in liver:
 - ✓ NH_{4^+} → urea (urea cycle)
 - ✓ 5 enzymatic steps (4 steps in urea cycle)
 - ✓ 2 cellular compartments involved
 - \checkmark Urea \rightarrow bloodstream \rightarrow kidney \rightarrow excreted into urine
- Urea cycle and citric acid (TCA) cycle
- Regulation of urea cycle
- Genetic defect and NH₄⁺ intoxication
 - ✓ Urea cycle defect and protein-rich diet
 - Essential a.a. must be provided in the diet.
 - A.A. can not be synthesized by human body.

Ch 22 Biosynthesis

table 18-1

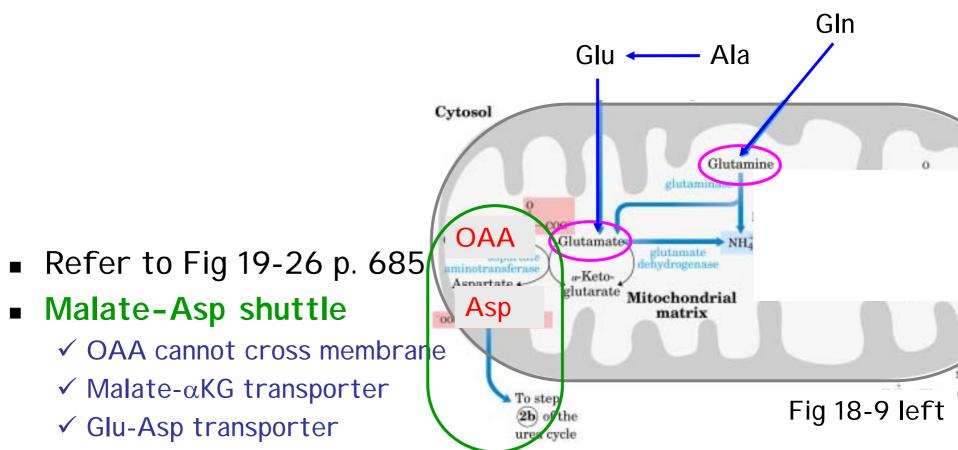
Nonessential and Essential Amino Acids for Humans and the Albino Rat


Nonessential	Essential	
Alanine	Arginine*	
Asparagine	Histidine	
Aspartate	Isoleucine	
Cysteine	Leucine	
Glutamate	Lysine	
Glutamine	Methionine	
Glycine	Phenylalanine	
Proline	Threonine	
Serine	Tryptophan	
Tyrosine	Valine	

*Essential in young, growing animals but not in adults.

Urea cycle

■Sources of N and C in synthesized (NH₂)₂CO In the mitochondria and cytoplasm of liver cells


- 1. Carbamoly phosphate synthetase I
- 2. Ornithine transcarbamoylase
- 3. Argininosuccinate synthetase
- 4. Argininosuccinate lyase
- 5. Arginase

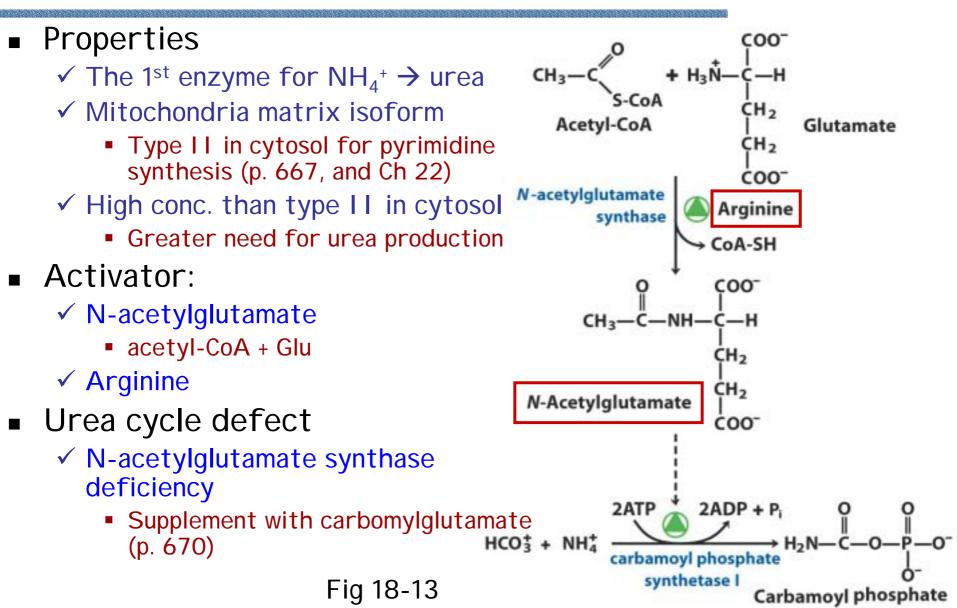
17

Sources of NH_4^+

- Glu and Gln release NH₄⁺ in the mitochondria of hepatocyte
- Asp is generated in mitochondrial matrix by transamination and transported into the cytosol of hepatocyte

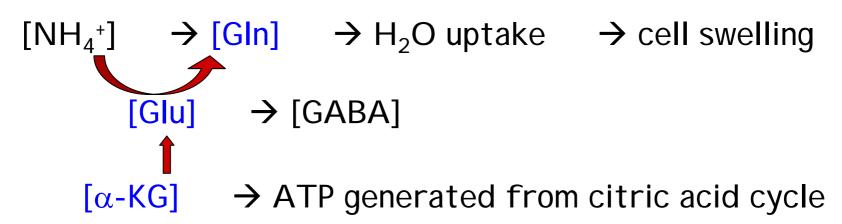
Regulation of urea cycle

Fig 18-12


p. 636

 Protein-rich diet and prolonged starvation:

 \checkmark \uparrow urea production.


- Long term:
 - Rate of synthesis of the 4 urea cycle Enz. and carbamoyl phosphate synthetase 1 in the liver.
- Short term:
 - Allosteric regulation of carbamoyl phosphate synthetase I
 - Activator: N-acetylglutamate, enhances the affinity of synthetase for ATP.

Carbamoyl phosphate synthetase I

NH₄⁺ intoxication (p.665)

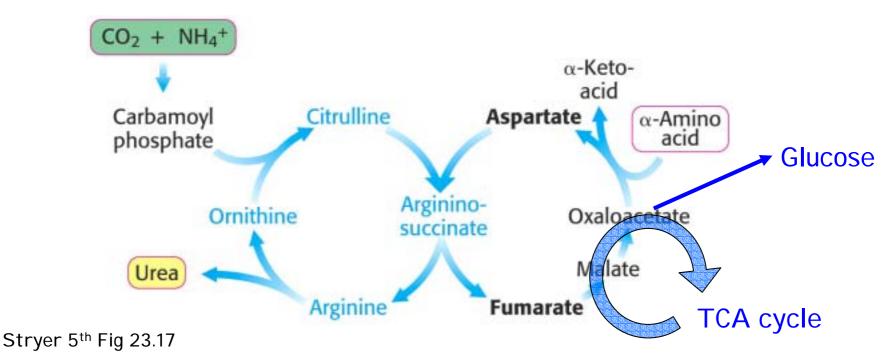
- Symptoms
 - ✓ Coma
 - ✓ Cerebral edema
 - ✓ Increase cranial pressure
- Possible mechanisms
 - ✓ Depletion of ATP in brain cells
 - $\checkmark\,$ Changes of cellular osmotic balance in brain
 - ✓ Depletion of neurotransmitter
- Remove excess NH₄⁺
 - ✓ Glutamate dehydrogenase: $NH_{4^+} + \alpha$ -KG → Glu
 - ✓ Glutamine synthetase: NH_4^+ + Glu → Gln

Defect in urea cycle enzymes

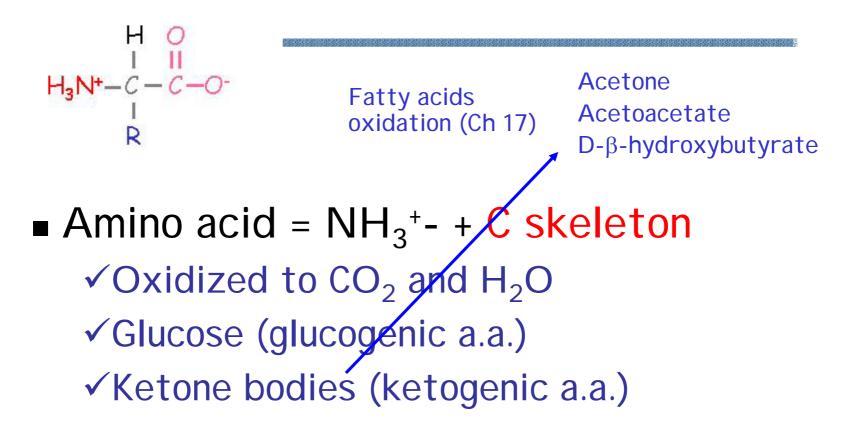
- Build-up of urea cycle intermediates
- Treatments

Lehninger 4th ed. p. 669-670

- ✓ Strict diet control and supplements of essential a.a.
- ✓ With the administration of :
 - Aromatic acids (Fig 18-14)
 - Lower NH₄⁺ level in blood
 - Benzoate + Gly + ... → hippurate (left)
 - Phenylbutyrate + Glutamine + ... → phenylacetylglutamine (right)
 - BCAA derived keto acids
 - Carbamoyl glutamate (N-acetylglutamate analog)
 - Deficiency of N-acetylglutamate synthase
 - Arginine
 - Deficiency of ornithine transcarbamoylase
 - Deficiency of argininosuccinate synthetase
 - Deficiency of argininosuccinase

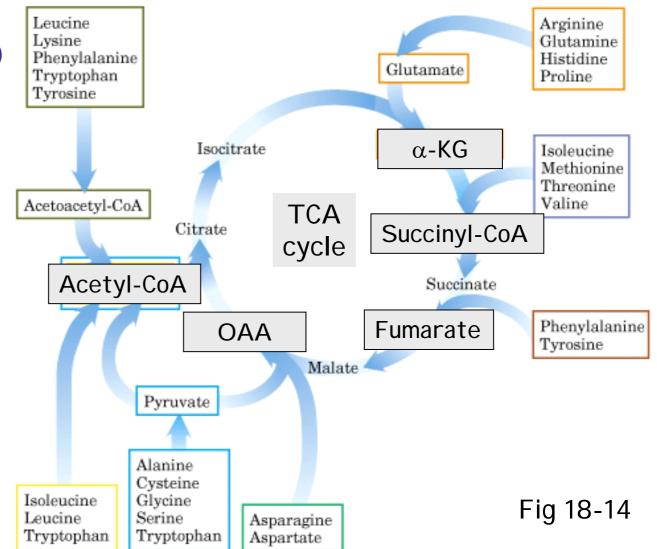

Energy cost of urea cycle

Urea synthesis costs energy...


p. 637

23

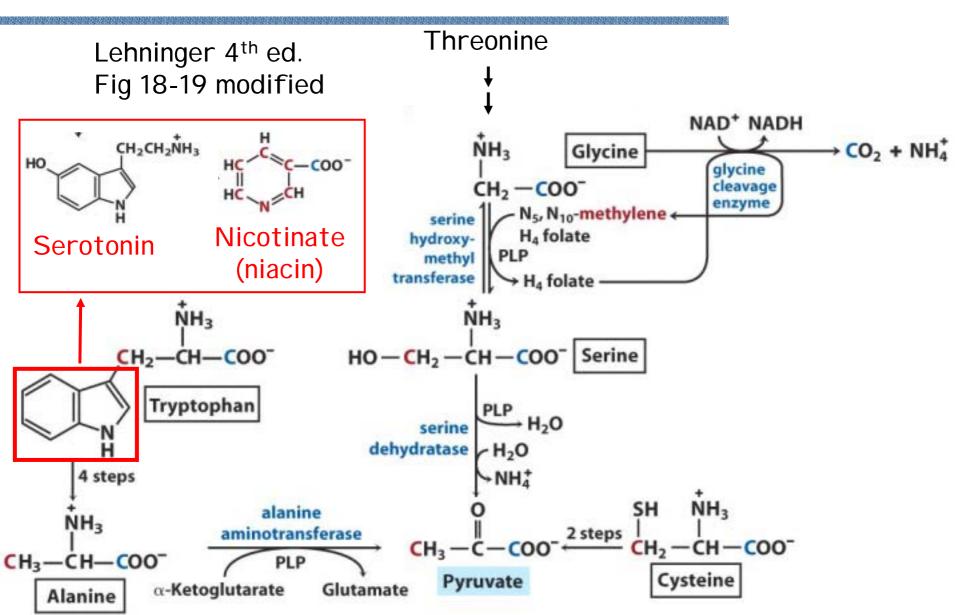
- ✓ 4 high energy phosphate groups from 3 ATP
- Oxaloacetate (OAA) regenerate produces NADH (Fig 18-11)
 ✓ 1 NADH → 2.5 ATP
- Pathway interconnections reduce the energetic cost of urea synthesis
 - ✓ Argininosuccinate shunt



Metabolism of C skeleton

Entering citric acid cycle

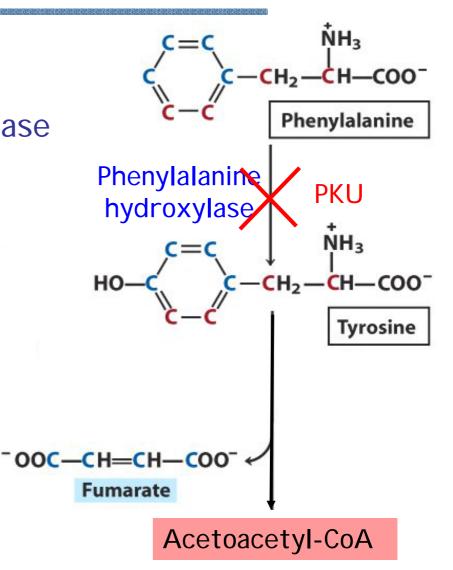
- 20 a.a. enter TCA cycle:
 - ✓ Acetyl-CoA (10)
 - ✓ α-ketoglutarate (5)
 - ✓ Succinyl-CoA (4)
 - ✓ Fumarate (2)
 - ✓ Oxaloacetate (2)
- Some a.a. yields more than one end product
 - ✓ Different C fates



One-carbon transfer

p.640-643

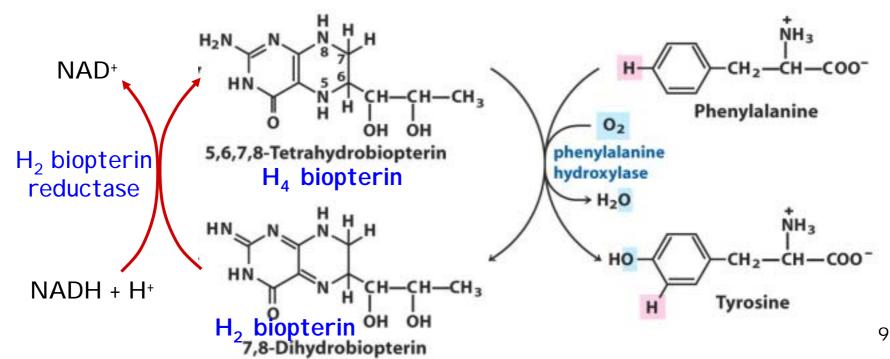
- Transfer one-carbon groups in different oxidation states.
- Some enzyme cofactors involved (Fig 18-15):
 ✓ Biotin
 - Transfer CO₂
 - ✓ Tetrahydrofolate (H₄ folate)
 - Transfer –HC=O, -HCOH, or –CH₃
 - ✓ S-adenosylmethionine (adoMet, SAM)
 - Transfer –CH₃


Ala, Trp, Cys, Thr, Ser, Gly \rightarrow Pyruvate

Phe and Tyr

• Phe + -OH \rightarrow Tyr ✓ Phenylalanine hydroxylase ✓ Phenylketonuria (PKU) Phe, Tyr as precursor ✓ Fig 22-29, p. 860 Dopamine Norepinephrine Epinephrine Tyr as precursor

✓ Melanin

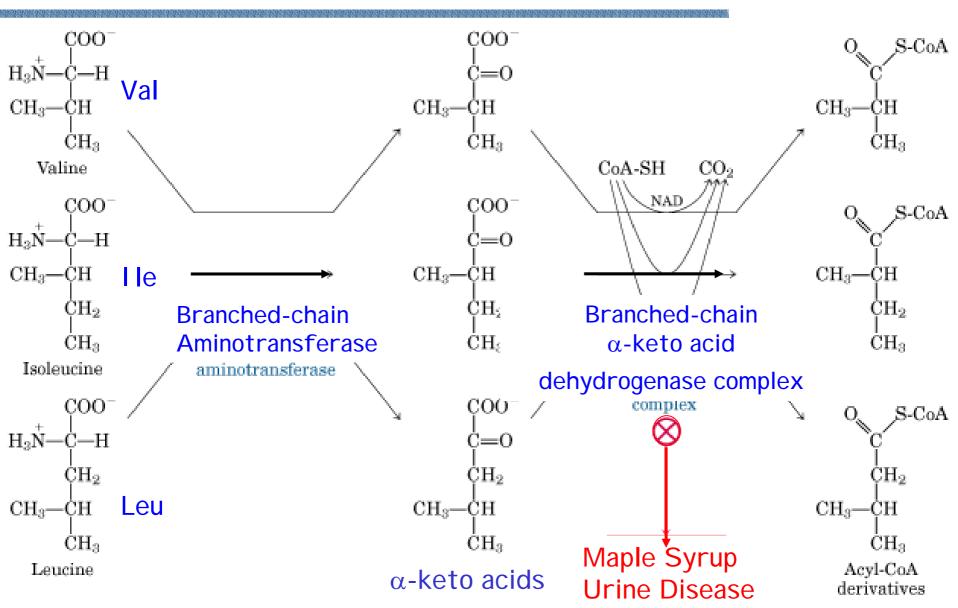

H₄ biopterin

- Phenylalanine hydroxylase
 - ✓ Mixed-function oxidase
 - ✓ Cofactor: tetrahydrobiopterin (H₄ biopterin)
- Dihydrobiopterin reductase is required to regenerate H₄ biopterin

Lehninger 4th ed.

Fig 18-24

- ✓ Defect in dihydrobiopterin (H₂ biopterin) reductase
 - PKU, norepinephrine, serotonin, L-dopa deficiency, ...
 - Supplement with H₄ biopterin, as well as 5-OH-Trp and L-dopa


Branched-chain a.a. (p. 651)

- BCAA: Val, He, Leu
 - \checkmark Not degraded in the liver
 - ✓ Oxidized as fuels in extrahepatic tissues
 - Muscle, adipose, kidney and brain

- ✓ Fig 18-27
- ✓ Branched-chain aminotransferase → α -keto acids
- ✓ Branched-chain α-keto acid dehydrogenase complex → acyl-CoA derivatives
 - Closely resemble pyruvate dehydrogenase
 - I nactivated by phosphorylation
 - Activated by dephosphorylation

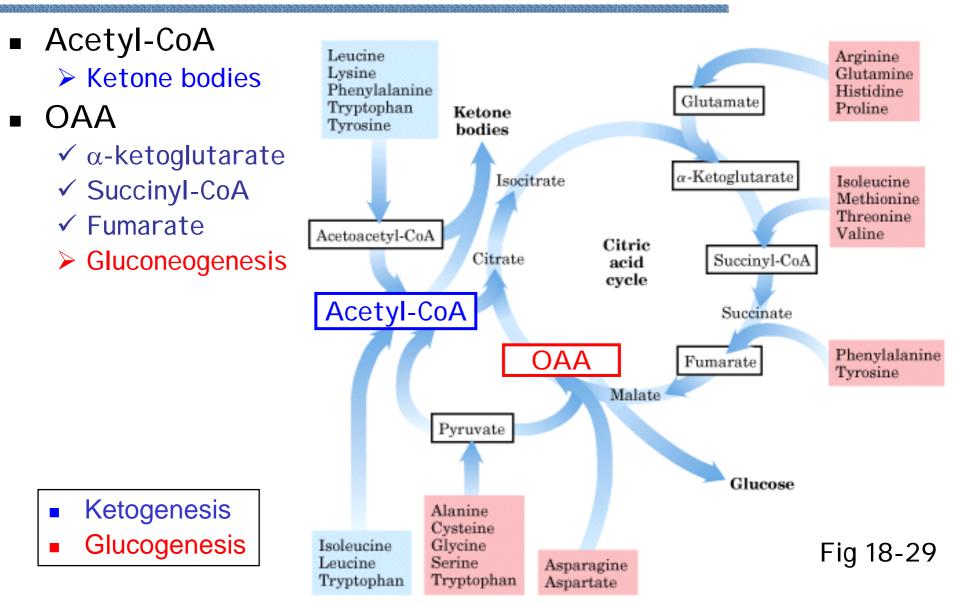
Val, Ile, and Leu (Fig 18-27)

Maple syrup urine disease

MSUD

p. 652

- ✓ Branched-chain ketonuria
- Defective branched-chain α-keto acid dehydrogenase complex
- α-keto acids (odor) derived (Val, I le and Leu) accumulate in blood and urine
 - ✓ Abnormal brain development
 - ✓ Mental retardation
 - ✓ Death in infancy
- Rigid diet control
 - ✓ Limit the intake of Val, I le, Leu to min. requirement for normal growth

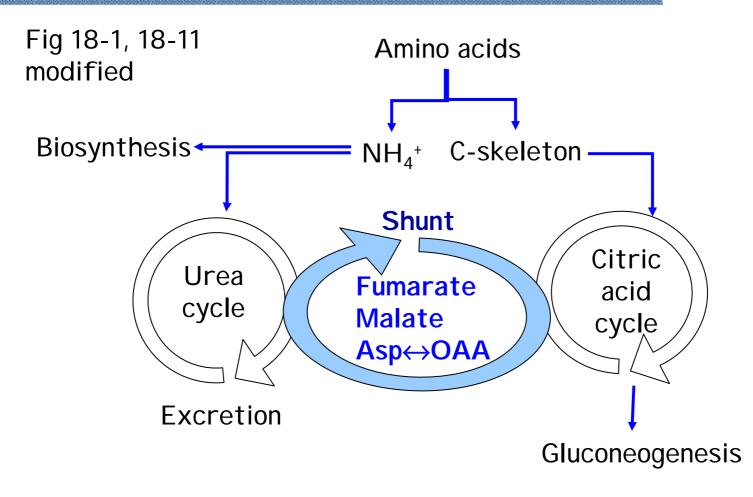

Genetic disorders

Caused by defective catabolic enzymes

table 18-2

Medical condition	Approximate incidence (per 100,000 births)	Defective process	Defective enzyme	Symptoms and effects
Albinism	3	Melanin synthesis from tyrosine	Tyrosine 3-mono- oxygenase (tyrosinase)	Lack of pigmentation; white hair, pink skin
Alkaptonuria	0.4	Tyrosine degradation	Homogentisate 1,2-dioxygenase	Dark pigment in urine; late-developing arthritis
Argininemia	<0.5	Urea synthesis	Arginase	Mental retardation
Argininosuccinic acidemia	1.5	Urea synthesis	Argininosuccinate lyase	Vomiting, convulsions
Carbamoyl phosphate synthetase I deficiency	>0.5	Urea synthesis	Carbamoyl phosphate synthetase I	Lethargy, convulsions, early death
Homocystinuria	0.5	Methionine degradation	Cystathionine β -synthase	Faulty bone develop- ment, mental retardation
Maple syrup urine disease (branched- chain ketoaciduria)	0.4	Isoleucine, leucine, and valine degradation	Branched-chain α-keto acid dehydrogenase complex	Vomiting, convulsions, mental retardation, early death
Methylmalonic acidemia	<0.5	Conversion of propionyl- CoA to succinyl-CoA	Methylmalonyl-CoA mutase	Vomiting, convulsions, mental retardation, early death
Phenylketonuria	8	Conversion of phenyl- alanine to tyrosine	Phenylalanine hydroxylase	Neonatal vomiting; mental retardation

Ketogenic vs. glucogenic a.a.

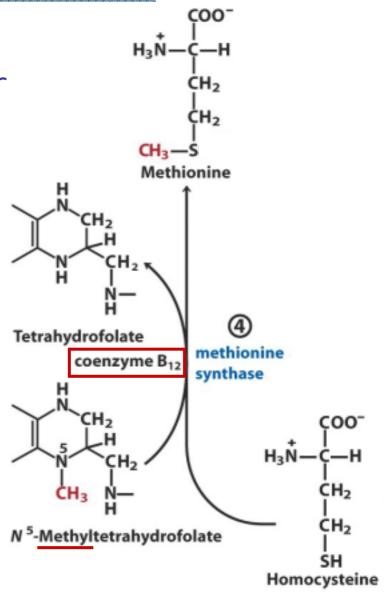

Ketogenesis vs. glucogenesis

Ketogenesis

- ✓ A.A. degraded to acetoacetyl-CoA and or acetyl-CoA (6 a.a.)
- ✓ Yield ketone bodies in the liver
- ✓ In untreated diabetes mellitus, liver produces large amounts of ketone bodies from both fatty acids and the ketogenic a.a.
- ✓ Exclusively ketogenic: Leu and Lys
- Glucogenesis
 - A.A. degraded to pyruvate, a-ketoglutarate, succinyl-CoA, fumarate, and/or oxaloacetate
 - ✓ Converted into glucose and glycogen.
- Both ketogenic and glucogenic
 - ✓ Phe, Tyr, Trp, and He

On p. 588, read the 1st paragraph under "The Glyoxylate Cycle" ³⁵

Catabolism of a.a. in mammals


The NH₃⁺ and the C skeleton take separate but interconnected pathways

Vit B₁₂ and folate (p. 674)

Lehninger 4th ed.

Fig 18-18 left

Met synthesis in mammal \checkmark N⁵-methyl H₄ folate as C donor C is then transferred to Vit B₁₂ Vit B₁₂ as the final C donor Vit B₁₂ deficiency \checkmark H₄ folate is trapped in N⁵methyl form (formed irreversibly) ✓ Available folate e.g. pernicious anemia

