

Amino acids, N-containing molecules Nucleotides

1

Modified Fig 22-9 p. 827

Biosynthesis of A.A. All C derived from intermediates in Glycolysis 3-Phosphoglycerate (3PG) Phosphoenolpyruvate (PEP) Pyruvate E4-P

- ✓ The citric acid cycle
 - α-Ketoglutarate
 - Oxaloacetate
- ✓ The pentose phosphate pathway
 - Ribose 5-phosphate
 - Erythrose 4-phosphate

N enters these pathways as

- ✓ Glu (aminotransferase)
- ✓ GIn (amidotransferase)

Precursors of amino acids

Table 22-1

p. 827

Amino Acid Biosynthetic Families, Grouped by Metabolic Precursor

α -Ketoglutarate

Glutamate Glutamine Proline Arginine*

Pyruvate Alanine Valine[†]

Leucine[†]

3-Phosphoglycerate

Serine Glycine Cysteine

Oxaloacetate

Aspartate Asparagine Methionine[†] Threonine[†] Lysine[†] Isoleucine[†] Phosphoenolpyruvate and erythrose 4-phosphate

Tryptophan[†] Phenylalanine[†] Tyrosine[‡]

Ribose 5-phosphate Histidine[†]

α -ketoglutarate

- Transamination
 - ✓ Aminotransferase
- Glutamine synthetase (requires ATP)

4

α -ketoglutarate \rightarrow Arg

$Arg \leftrightarrow Pro$

Fig 22-10, 11

3-phosphoglycerate → Ser

Next:

From oxaloacetate and pyruvate \checkmark 3 nonessential a.a. (same pathway in all organisms) Oxaloacetate p. 831 Aspartate Methionine Threonine Asparagine Lysine Alanine Isoleucine Valine Leucine

Review Fig 18-18, also Fig 18-8, glucose-alanine cycle Pyruvate

BCAA and their keto acids

- In bacteria (Fig 22-15 simplified)
- Keto acids as diet supplement for N elimination defect

Aromatic a.a.:

Phe, Tyr, Trp ✓ From PEP and E4-P in bacteria and plants

✓ Key intermediates: shikimate and chorismate:

•
$$(P) = PO_4^{3-}$$

- PRPP = 5-phosphoribosyl-1-pyrophosphate
- Ribose 5-phosphate (from pentose phosphate pathway)
- R5-P + ATP \rightarrow PRPP + AMP
- An important intermediate in several a.a. (Trp and His) and nucleotide synthesis.

His biosynthesis

- In plants and bacteria (Fig 22-20)
- Derived from 3 precursors:

A.A. biosynthesis

• 10 (+1) nonessential a.a. in human

Gln synthetase (II) p. 825

A.A derived molecules

p. 841

Porphyrins
Creatine and Glutathione
D-amino acids
Biological amines
Nitric oxide

Synthesis of heme

- Porphyrin precursors: *glycine* + succinyl-CoA
- Feedback inhibited by heme product
- Congential erythropoietic porphyria (Box 22-1):
 - \checkmark Porphyrin precursor accumulation, excreted in urine (red)
 - ✓ Deposited in skin (light sensitive)
 - ✓ Fluorescent teeth under UV
 - Often anemia (insufficient heme produced)

18

Heme biosynthesis

- Fig. 22-23
- TIBS 21 June 1996
- Harper's 26th ed. Ch32
- Gly + succinyl-CoA → aminolevulinate (ALA)
 - 1) $2 \times ALA \rightarrow \underline{Porphobilinogen}$ (PBG)
 - 2) 4 x PBG \rightarrow Preuroporphyrinogen
 - 3) → Uroporphyrinogen III
 - 4) → Coproporphyrinogen III
 - 5) \rightarrow Protoporphyrinogen
 - 6) → Protoporphyrin (Color, fluorescent)
 - 7) \rightarrow Heme

Mitochondria

Heme breakdown

p. 842

- Hb = globin (protein) + Fe + bilirubin (in spleen)
- Bilirubin (reddish-yellow pigment), insoluble
 - ✓ Transported to liver by serum albumin
 - ✓ Transformed to bile pigments (add glucuronide, becomes soluble) in liver
 - ✓ Excreted in the bile
- Impaired liver function or blocked bile secretion:
 - ✓ Bile leak into the blood
 - ✓ Yellowing of the skin and eyeballs
 - ✓ Jaundice

Bilirubin diglucuronide (soluble)

Creatine and phosphocreatine

p.842, 874-5

- Creatine (Cr) = Gly + Arg + Met (adoMet)
- Creatine + ATP → Phosphocreatine (creatine kinase)
- Phosphocreatine (PCr) = Creatine phosphate (CrP)
 - ✓ Very high [PCr] in skeletal muscle (10 x of [ATP])
 - ✓ Source of (P) for ATP synthesis from ADP
 - ✓ PCr as a phosphoryl reservoir (energy buffer)

Energy sources for muscle

Biological amines (I)

- A.A. are converted to amines by decarboxylation (requiring PLP as a cofactor, Fig 18-6, 22-27)
- Catecholamines (Tyr)
 - ✓ Dopamine, norepinephrine, epinephrine
 - ✓ Affects blood pressure
 - ✓ Parkinson's disease: underproduction of dopamine
 - ✓ Schizophrenia: overproduction of dopamine
- γ-aminobutyric acid (GABA) (Glu)
 - ✓ An inhibitory neurotransmitter (NT)
 - \checkmark Epileptic seizures: underproduction of GABA
 - \checkmark GABA analogs: treatment of epilepsy and hypertension
- Serotonin (Trp)
 - ✓ Neurotransmitter

Fig 22-27 p. 844

More amines ...

p. 845

Histamine (His)

✓ Vasodilator in animal tissue, involved in allergy

✓ Stimulate stomach acid secretion

- Cimetidine (Tagamet)
- Structural analog of histamine = histamine receptor antagonist
- Promoting healing of duodenal ulcers by inhibiting gastric acid secretion

Nitric oxide (NO)

- Derived from Arg, by NO synthase (NOS)
- Unstable gas, diffuse through membranes
 - ✓ Muscle relaxant (p.449)
 - Cardiac muscle: heart disease and nitroglycerine
 - Smooth muscle: erectile dysfunction and Viagra
 - ✓ Regulating blood pressure
 - ✓ Neurotransmission

✓ Blood clotting

Fig 22-29 or p.449

Nucleotides

Biosynthesis and Degradation

p.848

Introduction

■ Nucleic acid 核酸

- ✓ DNA (deoxyribonucleic acid)
 - 5′ → 3′
- ✓ RNA (ribonucleic acid)
 - Messenger RNA (mRNA)
 - Ribosomal RNA (rRNA)
 - Transfer RNA (tRNA)

■ Nucleotides 核苷酸

✓ A, T, C, G
 ✓ A, U, C, G

dA, dT, dC, dG 🔶

Nucleotides Synthesis

Fig 10-2 on p.326

- Purine
 - ✓ Adenylate (A)
 - ✓ Guanylate (G)
- Pyrimidine
 - ✓ Cytidylate (C)
 - ✓ Thymidylate (T)
 - ✓ Uridylate (U)
- de novo pathways
 - ✓ From small molecules readily available in cells
 - \checkmark A.A., ribose 5-phosphate, CO₂, and NH₃
 - ✓ The bases are *not* intermediates in this pathway
- Salvage pathways
 - Recycle the free bases and nucleosides released from nucleic acid breakdown

 CH_3

Nucleoside

Purine synthesis (I)

- A (AMP), G (GMP)
- Adding functional groups <u>one by one</u> onto a preexisting ribose phosphate → inosinate (IMP)
- Fig 22-31:

✓ PRPP, GIn, Gly, 1-C, GIn, CO_2 , Asp, 1-C → IMP

✓ In steps 8-9, Asp has an analogous role in the urea cycle

Purine synthesis (II)

- IMP (inosinate, inosine monophosphate)
 - \checkmark I MP + Asp \rightarrow AMP (GTP \rightarrow GDP + Pi)
 - ✓ IMP → oxidized IMP + GIn → GMP (ATP → AMP + PPi)

Pyrimidine synthesis (I)

p. 853-854

- U (UMP), C (CMP), T (dTMP)
- The ring (orotate) structure is <u>synthesized first</u>, then attached to PRPP. (Fig 22-34, center)

Source of the atoms of the pyrimidine ring.

Pyrimidine synthesis (II)

- Ribonucleotides: U, C
 - \checkmark Carbamoyl phosphate, aspartate \rightarrow \rightarrow \rightarrow orotate
 - ✓ Orotate + PRPP \rightarrow \rightarrow <u>UMP</u>
 - ✓ UMP → UTP + GIn → $\overline{\text{CTP}}$ → CDP, $\underline{\text{CMP}}$
 - ✓ Regulated by feedback inhibition
 - Carbamoyl phosphate synthetase II (cytosolic isoform)

Deoxyribonucleotide synthesis

Precursors: ribonucleotides

p. 856

- ✓ Reduction only occur at the level of ribonucleoside <u>diphosphate</u> by ribonucleotide reductase
- \checkmark AMP \rightarrow ADP \rightarrow dADP \rightarrow dAMP
- $\checkmark \text{ GMP} \rightarrow \text{GDP} \rightarrow \text{dGDP} \rightarrow \text{dGMP}$
- \checkmark CMP \rightarrow CDP \rightarrow dCDP \rightarrow dCMP
- \checkmark UMP \rightarrow UDP \rightarrow dUDP \rightarrow ? \rightarrow dTMP

Synthesis of dTMP

- Thymidylate (dTMP) is derived from dUMP
 - ✓ Thymidylate synthase
 - Fluorouracil → FdUMP (mechanism-based inhibitor)
 - ✓ Dihydrofolate reductase
 - Methotrexate (competitive inhibitor)
 - Aminopterin
 - Fig 22-42, 22-47, 22-48

Nucleotide salvage (p. 862)

- Purine salvage
 - ✓ One-step reaction
 - \checkmark The purine bases (adenine, guanine) + PRPP \rightarrow AMP, GMP
- Pyrimidine salvage
 - ✓ Two-step reaction
 - ✓ The pyrimidine bases (uracil, cytocine) + ribose → nucleosides (uridine, cytidine)
 - ✓ Nucleosides (uridine, cytidine) + Pi → nucleotides (UMP, CMP)

Nucleotide degradation p. 861

Inhibitors and anticancer drugs

- Growing cells need to synthesize both DNA and RNA.
 - ✓ Drugs inhibiting nucleotide biosynthesis affect not only tumor cells but normal ones as well.
 - Side effects of cancer chemotherapy
 - Stem cells: require DNA and RNA synthesis
 - Inhibits the formation of erythrocytes, lymphocytes, cells of the intestinal epithelium, and hair-forming cells.
- Most tumor cells possess a more active salvage pathway than do normal cells.
 - ✓ Drugs entering metabolism via the salvage pathways obtain a higher conc. in tumor cells and have a therapeutic advantage.
 - Gln analogs → inhibit glutamine <u>amid</u>otransferases
 - Azaserine
 - Acivicin