Part (II) Nitrogenous molecules metabolism

Amino acids metabolism

- 1. Protein/amino acids catabolism:
 - Protein turnover
 - Normal cellular protein degradation
 - PEST sequence (rich in P, E, S, and T) target proteins for rapid degradation
 - In lysosome (ATP-independent processes): extracellular, membrane-associated and long-lived intracellular proteins.
 - ATP and Ubiquitin-tag \rightarrow proteasome (abnormal and short-lived proteins in cytosol)
 - Dietary protein surplus
 - Provide up to 90% metabolic energy in carnivores after meal.
 - \diamond Amino acids can not be stored.
 - Starvation or diabetes mellitus
 - Protein is used as fuel
 - Kwashiorkor: results when a child is weaned onto a starchy diet poor in protein
 - Marasmus: both caloric intake and specific amino acids are deficient.
 - Nitrogen balance
 - Positive: an access of ingested over excreted, accompanies growth and pregnancy
 - Negative: output exceeds intake, may follow surgery, advanced cancer, and kwashiorkor or marasmus.
- 2. Amino acid catabolism:
 - Amino group: $NH_4^+ \rightarrow (NH_3)_2CO$ (in mammal, urea cycle)
 - C-skeleton: all enter TCA cycle
 - ♦ Glucogenic a.a.
 - Degraded to pyruvate, a-ketoglutarate, succinyl-CoA, fumarate, oxaloacetate → glucose and glycogen.
 - ♦ Ketogenic a.a.
 - Degraded to acetoacetyl-CoA and or acetyl-CoA (6 a.a.) → ketone bodies (acetone, acetoacetate, D-β-hydroxybutyrate).
 - Untreated diabetes: liver will produce large amounts of ketone bodies from fatty acids and ketongenic a.a.
 - Leu is an exclusively ketogenic a.a. that is common in proteins. Its degradation makes a substantial contribution to ketosis under starvation conditions.
 - Classification by biological function (glucogenic, ketogenic):

Glucogenic	Ketogenic	Glucogenic and ketogenic
Ala, Arg, Asp	Leu	Ile
Cys	Lys	Phe
Glu, Gly		Trp
His		Tyr
Met		
Pro, (Hyp)		
Ser		
Thr		
Val		

- 3. Amino acid degradation in human:
 - Amino group:

٥

٥

- Transamination (aminotransferase or transaminase; requires PLP-pyridoxal phosphate as a cofactor)
 - SALT test (alanine aminotransferase, or GPT)
 - SAST test (aspartate ..., or GOT)
- \diamond Transfer NH₄⁺ to liver in the form of: Glu, Gln, Ala
 - In muscle tissue: pyruvate + $NH_4^+ \rightarrow alanine$
 - Glucose-alanine cycle + Glucose-lactate cycle = Cori cycle
- Deamination (trans-deamination) in liver by glutamate dehydrogenase
 - Requires NAD⁺ or NADP⁺
 - Allosterically regulated (reflects energy needs):
 - ✓ Activator: GDP, ADP
 - ✓ Inhibitor: GTP, ATP
 - Acidosis and Gln processing in kidney
 - N excretion: almost exclusively in liver:
 - $NH_4^+ \rightarrow$ urea (urea cycle)
 - 5 enzymatic steps (4 steps in urea cycle)
 - 2 cellular compartments involved
 - Urea \rightarrow bloodstream \rightarrow kidney \rightarrow excreted into urine
- Urea cycle enzyme defect \rightarrow ammonia intoxication
 - Carbamoly phosphate <u>synthetase I</u> (hyperammonemia type I)
 - ✓ Supplement of carbamoyl glutamate (N-acetylglutamate analog)
 - Ornithine transcarbamoylase (hyperammonemia type II)
 - Argininosuccinate synthetase (citrullinemia)
 - ✓ Feeding arginine promotes N excretion
 - ✓ Feeding benzoate, phenylbutyrate (aromatic keto acids)
 - Argininosuccinate <u>lyase</u> (argininosuccinicaciduria)
 - ✓ Feeding arginine and benzoate
 - Argin<u>ase (hyperargininemia)</u>
 - ✓ Low protein diet
- C-skeleton: all enter mainstream metabolic pathway, TCA cycle.
 - Cofactor for one C-transfer:
 - Biotin (transfer CO₂)
 - Tetrahydrofolate (H₄ folate) (transfer –HC=O, -HCOH, or –CH₃)
 ✓ H₄ folate deficiency and pernicious anemia
 - S-adenosylmethionine (adoMet, SAM) (transfer –CH₃)
 - BCAA (Val, Leu, and Ile)
 - Degraded in extrahepatic tissue (muscle, adipose tissue, kidney and brain)
 - Branched-chain aminotransferase
 - Branched-chain α-keto acid dehydrogenase complex
 - ✓ Maple syrup urine disease (MSUD)/branched-chain ketonuria
 - ✓ Diet restriction, branched-chain keto acids supplement.
 - Phenylalanine and tyrosine
 - Phe \rightarrow Tyr: phenylalanine hydroxylase and phenylketouria (PKU)
 - ✓ The artificial sweetener: aspartame
 - Tyrosine degradation
 - ✓ Homogentisate dioxygenase defect → alkaptonuria

4. Principal serum enzymes used in clinical diagnosis: (from Harper's 26th ed. Table 7.2)

Serum Enzyme	Major diagnostic use
Aminotransferases:	Myocardial infarction
AST, or SGOT	Viral hepatitis
ALT, or SGPT	
Amylase	Acute pancreatitis
Ceruloplasmin	Hepatolenticular degeneration
	(Wilson's disease)
Creatine kinase	Muscle disorders and myocardial infarction
γ-Glutamyl transpeptidase	Various liver diseases
Lactate dehydrogenase (isozymes)	Myocardial infarction
Lipase	Acute pancreatitis
Phosphatase, acid	Metastatic carcinoma of the prostate
Phosphatase, alkaline (isozymes)	Various bone disorders, obstructive liver diseases

table 18-2

Medical condition	Approximate incidence (per 100,000 births)	Defective process	Defective enzyme	Symptoms and effects
Albinism	3	Melanin synthesis from tyrosine	Tyrosine 3-mono- coygenase (tyrosinase)	Lack of pigmentation; white hair, pink skin
Alkaptonuria	0.4	Tyrosine degradation	Homogentisate 1,2-dioxygenase	Dark pigment in urine; late-developing arthritis
Argininemia	<0.5	Urea synthesis	Arginase	Mental retardation
Argininosuccinit: acidemia	1.5	Unsa synthesis	Argininosuccinate lyase	Vomiting, convulsions
Carbamoyl phosphate synthetase I deficiency	>0.5	Urea synthesis	Carbamoyi phosphate synthetase I	Lethargy, convulsions, early death
Homocystinuria	0.5	Methionine degradation	Cystathionine <i>d</i> -synthase	Faulty bone develop- ment, mental retardation
Maple syrup urine disease (branched- chain ketoaciduria)	0.4	Isoleucine, leucine, and valine degradation	Branched-chain a-keto acid dehydrogenase complex	Vomiting, convulsions, mental retardation, early death
Methylmaionic acidemia	<0.5	Conversion of propionyt- CoA to succinyi-CoA	MethylmalonyI-CoA mutase	Vomiting, convulsions, mental retardation, early death
Phenylketonuria	В	Conversion of phenyl- alanine to tyrosine	Phenylalanine hydroxylase	Neonatal vomiting: mental retardation

5. Classification by nutrition: essential vs. nonessential amino acid: * semi-essential.

Nutritionally essential	Nutritionally nonessential
Arginine*	Alanine
Histidine	Asparagine
Isoleucine	Aspartate
Leucine	Cysteine
Lysine	Glutamate
Methionine	Glutamine
Phenylalanine	Glycine
Threonine	Proline
Tryptophan	Serine
Valine	Tyrosine

- 6. Amino acid biosynthesis:
 - N enters the pathway in the form of:
 - Glu (aminotransferase), Gln (amidotransferase)
 - C-skeleton is derived from:
 - Glycolysis (3-phosphoglycerate/3-PG, phosphoenolpyruvate/PEP, pyruvate)
 - \diamond Citric acid cycle (α -KG, OAA)
 - Pentose phosphate pathway (Ribose 5-phosphate, erythrose 4-phosphate)

- 7. Amino acid biosynthesis in human:
 - Essential a.a.: complex chemical structure, require multiple steps, human body has lost the ability to do the job...

- Non-essential a.a.: short biosynthetic pathways (only few steps)
 - α -ketoglutarate \rightarrow Glu, Gln, Arg, Pro
 - \diamond 3-phosphoglycerate → Ser, Gly, Cys
 - Cys from Met (S) and Ser (C-skeleton)
 - Oxaloacetate \rightarrow Asp, Asn
 - $\diamond \quad \text{Pyruvate} \rightarrow \text{Ala}$
 - Tyr from Phe (phenylalanine hydroxylase)
 - Phenylalanine hydroxylase is a mixed-function oxygenases, which catalyze simultaneous hydroxylation of a substrate by an oxygen atom of O₂ and reduction of the other oxygen atom to H₂O.
 - Phenylalanine hydroxylase requires a cofactor tetrahydrobiopterin.
 - ✓ Dihydrobiopterin reductase defect: PKU, L-dopa...
 - ✓ Supplementing the diet with H₄ biopterin itself is ineffective because it is unstable and does not cross the BBB.

- Hydroxyproline and hydroxylysine (in collagen): no specialized tRNA, not ٥ from dietary intake (degraded completely)
 - Derived from Pro and Lys after incorporation into peptides (posttranslational modification)
 - The hydroxylases are **mixed-function oxygenases** that require substrate, molecular O₂, ascorbate, Fe²⁺, and α -ketoglutarate. \checkmark Pro + α -KG + O₂ (ascorbate, Fe²⁺) \rightarrow Hydroly-Pro + succinate

- BCAA (Val, Leu, Ile) can be formed by transamination with their
 - corresponding α -keto acids (supplied in diet).
 - Ammonia intoxication....
- Regulation

 \diamond

- Allosteric feedback inhibition \diamond
 - End product acts as a modulator for the allosteric enzyme.
 - Simple and concerted inhibition.
- Glutamine synthetase ٥
 - Allosteric regulation
 - Covalent modification
- 8. S-adenosylmethionine (S-adoMet, SAM)
 - Cofactor for methyl group transfer: activated methyl cycle
 - From ATP + Met (by methionine adenosyl transferase) (Fig 18-17) \diamond
 - Triphosphate of ATP is displaced by S from Met.
 - \checkmark Similar reaction in coenzyme B₁₂ synthesis.
 - Met is regenerated by addition of a methyl group to homocysteine (by \diamond methionine synthase)
 - The 1-carbon donor: H₄ folate or methylcobalamin derived from coenzyme B₁₂.
 - The methyl group of methylcobalamin is derived from N⁵-methyl H₄ folate.
 - B_{12} deficiency: may trap folate in N⁵-methyl form \rightarrow pernicious anemia.

Molecules derived from amino acids:

- 9. Porphyrins (Gly + Succinyl-CoA)
 - Multiple steps
 - ♦ ALA synthestase (ALAS1, drug-induced ALAS1 de-repression)
 - ALA dehydratase (Zn containing enzyme), can be inhibited by Pb (lead).
 - Degraded to linear tetrapyrrole derivative: bilirubin (jaundice).
- 10. Creatine (Gly + Arg + Met/S-adoMet)
 - $Cr + ATP \leftarrow \rightarrow CrP + ADP$ (by creatine kinase)
 - Creatine (Cr) and phosphocreatine (PCr, or CrP)
 - Energy buffer in skeletal muscle
 - Creatinine: from CrP by irreversible, nonenzymatic dehydration and loss of phosphate.
 - The 24-hour urinary excretion of creatinine is proportionate to muscle mass.
- 11. Glutathione (GSH), (Gly, Glu and Cys)
 - As a redox buffer.
 - Maintain Cys in the reduced form (-SH).
 - \diamond Iron of heme in the ferrous (Fe²⁺) state.
 - Serve as a reducing agent for glutaredoxin in deoxyribonucleotide synthesis. (Fig 22-37)
 - Remove toxic peroxides under aerobic conditions.
 - Oxidized form: GSSG = two GSH linked by a disulfide bond.
 - $\diamond 2 \text{ GSH} + \text{R-O-O-H} \rightarrow \text{GSSH} + \text{H}_2\text{O} + \text{R-OH}$
 - Catalyzed by glutathione peroxidase (containing selenium, Se, in the form of selenocysteine).
- 12. D-amino acids
 - Bacterial cell wall.
 - ♦ D-alanine and D-glutamate
 - Derived from L-isomers by racemase (PLP as coenzyme), which is the prime target for pharmaceutical agents (side-effect on other PLP-requiring enzymes)
 - L-fluoroalanine: tested as antibacterial drug
 - Cycloserine: to treat tuberculosis
 - Peptide antibiotics.
- 13. From aromatic a.a. to many plant substances
 - From Phe and Tyr
 - ◇ Tannins (單寧酸): inhibit oxidation in wines
 - Morphine: potent physiological effects
 - Flavor components: cinnamon oil, nutmeg (肉荳蔻), cloves (丁香), vanilla, and cayenne pepper (辣椒).
- 14. Amino acids are converted to biological amines by **decarboxylation** (PLP as a cofactor):
 - From Tyr
 - Dopa, dopamine (\downarrow Parkinson's disease, \uparrow schizophrenia)
 - Dopa \rightarrow melanin
 - ♦ Dopamine → norepinephrine (requires ascorbate, Cu^{2+})
 - \diamond Norepinephrine \rightarrow epinephrine (requires adoMet)
 - From Glu
 - ◊ GABA (γ-aminobutyrate): ↓ epileptic seizures

- GABA analogs to treat epilepsy and hypertension
- Or use inhibitors of GABA aminotransferase (GABA-degrading enzyme)
- From His
 - Hitamine (allergic reaction, stimulate gastric acid)
 - Cimetidine (Tagamet): histamine receptor antagonist: structural analog of histamine, it promotes healing of duodenal ulcers by inhibiting secretion of gastric acid
- From Trp
 - Nicotinate (niacin), a precursor of NAD and NADP.
 - Serotonin: a potent vasoconstrictor and smooth muscle stimulator.
 - $\diamond \quad \text{Serotonin} \rightarrow \rightarrow \text{melatonin.}$
- From Met and ornithine (by ornithine decarboxylase, PLP-requiring enzyme)
 Spermine and spermidine: used in DNA packaging.
 - Required in large amounts in rapidly dividing cells.
 - African sleeping sickness (trypanosome-caused disease, 錐蟲病): ornithine decarboxylase has a much slower turnover rate in trypanosome than in human (human, fast turnover, less side-effect of enzyme inhibitor)
 - DMFO (difluoromethylornithine): suicide inhibitor or mechanismbased inhibitor.

15. From Arg

- NO (nitric oxide), gas, unstable and can not be stored.
 - \diamond Nitric oxide synthase (NOS): 4 cofactors (FMN, FAD, H₄ biopterin, Fe³⁺-heme)
 - \diamond Synthesis is stimulated by NOS with Ca²⁺-CaM.
 - Neurotransmission, blood clotting, and the control of blood pressure.

16. Summary of the biosynthesis of some important amines:

Amine	Amino acid precursor	Distinguishing features of pathways
Acetylcholine	Ser, Met	S-adoMet is methylating agent
Norepinephrine	Tyr	L-dopa is intermediate and precursor of melanins
Epinephrine	Tyr, Met	S-adoMet-dependent tyrosine aminotransferase induced by
		glucocorticoids
Serotonin	Trp	5-hydroxytryptophan intermediate
γ-aminobutyrate	Glu	Decarboxylation reaction
(GABA)		
Histamine	His	Decarboxylation reaction
Spermine	Ornithine, Met	Spermidine is intermediate
Creatine	Arg, Gly, Met	Guanidino group transferred to glycine
Purine	Gly, Asp, Gln	Gly \rightarrow part of the carbon skeleton
nucleotide		
Pyrimidine	Asp, Gln	Asp \rightarrow part of the carbon skeleton
nucleotide		

Nucleotide metabolism

- 17. Nucleotide
 - Chemical structure:
 - Phosphate group (monophosphate)
 - Pentose (ribose, deoxyribose)
 - \diamond Nitrogenous base (A, G, C, U, T)
 - Absorb UV light (max. $\sim 260 \text{ nm}$)
 - Polynucleotide: NT_1 (5'-P) + NT_2 (3' OH- of ribose) → 3'→5' phosphodiester bond.
 - RNA is less stable as the 2'-OH functions as a nucleophile during hydrolysis of the 3',5'-phosphodiester bond.
 - Directional molecules: $5' \rightarrow 3'$.
 - 5'-end: free or phosphorylated 5'-OH
 - 3'-end: free 3'-OH

- 18. Nucleotide synthesis: de novo pathways and salvage pathways:
 - Purine (two rings, shorter name) de novo synthesis:
 - ♦ **PRPP**, Gln x 2, Gly, Formate x 2, CO₂, Asp \rightarrow inosine monophosphate (IMP)
 - ♦ IMP \rightarrow AMP (GTP hydrolysis); IMP \rightarrow GMP (ATP hydrolysis).
 - 1-C transfer (formate): requires H₄ folate (folic acid)
 - Deficiency of folic acid \rightarrow purine deficiency state
 - Inhibition of H₄ folate formation \rightarrow cancer chemotherapy.
 - e.g. azaserine, diazanorleucine, 6-mercaptopurine, and mycophenolic acid.
 - Purine salvage pathway (less energy required):
 - Purine base + PRPP \rightarrow Purine nucleotide + PPi (pyrophosphate) or
 - ♦ Purine nucleoside + ATP \rightarrow Purine nucleotide + ADP.
 - Liver is the major site of purine nucleotide biosynthesis.
 - Regulation (allosteric feedback + reciprocal energy use):
 - ♦ Ribose 5-phosphate \rightarrow PRPP \rightarrow ... AMP, ADP, GMP, and GDP
 - IMP → AMP (GTP hydrolysis); IMP → GMP (ATP hydrolysis).
 - Ribonucleotide vs. deoxyribonucleotide. (reduction at the level of diphosphate).
 ◊ Requires: thioredoxin, thioredoxin reductase, and NADPH.
 - Pyrimidine (one ring, longer name): orotate + PRPP \rightarrow UMP \rightarrow CMP
 - UDP \rightarrow dUDP \rightarrow dUMP \rightarrow dTMP (thymidylate synthase + 1 C-transfer)
 - Dihydrofolate reductase is required and it is a target for the anticancer drug **methotrexate** (competitive inhibitor).
 - \diamond Disorders of folate and vitamin B₁₂ metabolism results in deficiencies of TMP.
 - Thymidylate synthase is inhibited by **fluorouracil** and **Aminopterin** (mechanism-based inhibitor).

 \diamond

- Pyrimidine catabolism: $NH_4^+ \rightarrow$ urea, all soluble compound
 - Thymine $\rightarrow \beta$ -aminoisobutyrate (Harper 26th, p.300) \rightarrow methylmalonylsemialdehyde (an intermediate of Val catabolism) $\rightarrow \rightarrow$ succinyl-CoA (Lehninger 3rd, Fig 22-44).
 - ^D Excretion of β -aminoisobutyrate increases in leukemia and severe xray radiationexposure due to increased destruction of DNA. However, many persons of Chinese or Japanese ancestry routinely excrete β aminoisobutyrate.
 - $\diamond \quad \text{Cytosine} \rightarrow \text{uracil} \rightarrow \rightarrow \beta \text{-alanine.}$
- Disorders of purine catabolism. Purine is degraded to uric acid.
 - ◊ Gout
 - Lesch-Nyhan Syndrome:
 - Defect in hypoxanthine-guanine phosphoribosyl transferase (HPRT, HGPRTase, purine salvage enzyme)
 - Von Gierke's diseases
 - Glucose-6-phosphatase deficiency.
 - Enhanced PRPP precursor (R5P).
 - Hypouricemia
 - **Xanthine oxidase** deficiency (**allopurinol** is a competitive inhibitor)
 - **o** Immunodificiency
 - Accumulation of dGTP and dATP, which inhibit ribonucleotide reductase and thereby deplete cells of DNA precursors.
 - Both T cells and B cells are sparse and dysfunctional: adenosine deaminase deficiency. → sterile "bubble" environment.
 - T cell deficiency but B cell normal: **purine nucleoside phosphorylase** deficiency.
- Many chemotherapeutic agents target enzymes in the nucleotide biosynthetic pathway.
 - Cancer cells has a more active salvage pathway
 - Compounds that inhibit glutamine amidotransferases (N donor)
 - Glutamine analogs: azaserine and acivicin.
 - **Thymidylate snythase** and **dihydrofolate reductase**: enzymes that provide the only cellular pthway for thymine synthesis.
 - Fluorouracil → FdUMP: acts on thymidylate synthase (mechanism-based).
 - Methotrexate: inhibits dihydrofolate reductase (competitive inhibitor)
 - Aminopterin: inhibits dihydrofolate reductase.
 - Allopurinol (purine analog) used in against African trypanosomiasis.
 - Allopurinol is also an alternative substrate for orotate phosphoribosyltransferase, competes with orotic acid.

19. Review of amino acids:

Amino acid	Features
Gly	Break α -helix, to form β -turn;
-	Triple helix in collagen;
	Creatine, heme/porphrin, purines.
α -alanine	L-Ala \rightarrow pyruvate (by ALT or SGPT);
	D-ala in bacterial wall and some antibiotics.
B-alanine	A metabolite of cysteine;
, · · · ·	Present in coenzyme A as β -alanyl dipeptides (carnosine) (in pantotheinic acid \rightarrow CoA);
	Product of degradation of pyrimidine (cytosine and uracil).
Cys	The thioethanolamine portion of coenzyme A (CO ₂ + β -mercaptoethylamine/Cys \rightarrow CoA);
	$CO_2 + \beta$ -mercaptoethylamine/Cys \rightarrow taurine \rightarrow bile salt. (the taurine that conjugates with bile
	acids such as taurocholic acid).
Ser	Serine protease (trypsin, chymotrypsin, elastase); catalytic mechanism: covalent catalysis;
	Irreversible inhibitor (diisopropylfluorophosphate, DIFP);
	Ser \rightarrow ethanolamine \rightarrow choline \rightarrow phosphatidylcholine/Lecithin
	choline \rightarrow acetylcholine
	Ser (palmitoyl-CoA) \rightarrow Sphingosine
	O-linked glycosylation site, phosphorylation site.
Thr	O-linked glycosylation site, phosphorylation site.
Asp	Asp protease (HIV-1 protease, inhibited by pepstatin); covalent catalysis;
	General acid-base catalysis (lysozyme, trypsin, chymotrypsin);
	Provide NH_3^+ in urea and purine (inosine) biosynthesis;
	Provide C-skeleton in pyrimidine ring biosynthesis.
Glu	General acid-base catalysis (lysozyme)
	Covalent catalysis (carboxypeptidase A)
	Guutathione: GSH peroxidase/Se.
Pro	Break α -helix, induce β -turn;
	Pro and HO-Pro in collagen (and HO-Lys): hydroxylation via oxidase and ascorbate.
Val, Leu, Ile	BCAA: contained β -oxidation;
	Energy source of muscle, not degraded in liver
Met	Specific cleavaged by CNBr (cyanogens bromide) at C-terminus;
	Precursor of S-adoMet, spermine, spermidine
Arg	Trypsin cleaves the carboxyl site of Arg and Lys residues in peptide;
	Semi-essential a.a.;
	Precursor of NO, creatine
Lys	Trypsin cleaves the carboxyl site of Arg and Lys residues in peptide;
-	Protein/Lys-NH ₃ + OOC-ubiquitin \rightarrow ubiquitin-dependent degradation.
Trp	Nicotinate (a precursor of NAD and NADP); Serotonin
H1S	Semi-essential a.a.;
	General acid-base catalysis: chymotrypsin; trypsin.