
Supplement for MD

- Metabolic acidosis
- Ammonia intoxication
- Carbamoyl-P synthetase I
- Urea cycle defect
- Vit B_{12} and folate
- H₄-biopterin

Metabolic acidosis (p. 681)

- Kidney extracts little Gln from bloodstream normally
- Acidosis increases glutamine processing in kidney
 - ✓ NH_4^+ + metabolic acids \rightarrow salts (excreted in urine)
 - \checkmark α-ketoglutarate → bicarbonate (HCO₃-, buffer)

In kidney

NH₄⁺ intoxication

(p.681-682)

- Symptoms
 - ✓ Coma
 - ✓ Cerebral edema
 - ✓ Increase cranial pressure
- Possible mechanisms
 - ✓ Depletion of ATP in brain cells
 - ✓ Changes of cellular osmotic balance in brain
 - ✓ Depletion of neurotransmitter
- Remove excess NH₄⁺
 - ✓ Glutamate dehydrogenase: $NH_4^+ + \alpha KG \rightarrow Glu$
 - ✓ Glutamine synthetase: $NH_4^+ + Glu \rightarrow Gln$

$$[NH_4^+] \uparrow \rightarrow [Gln] \uparrow \rightarrow H_2O \text{ uptake } \uparrow \rightarrow \text{cell swelling}$$

$$[Glu] \downarrow \rightarrow [GABA] \downarrow$$

$$[\alpha\text{-KG}] \downarrow \rightarrow ATP \text{ generated from citric acid cycle } \downarrow$$

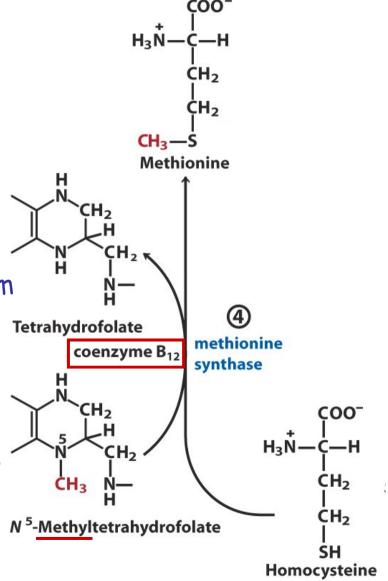
Defect in urea cycle enzymes

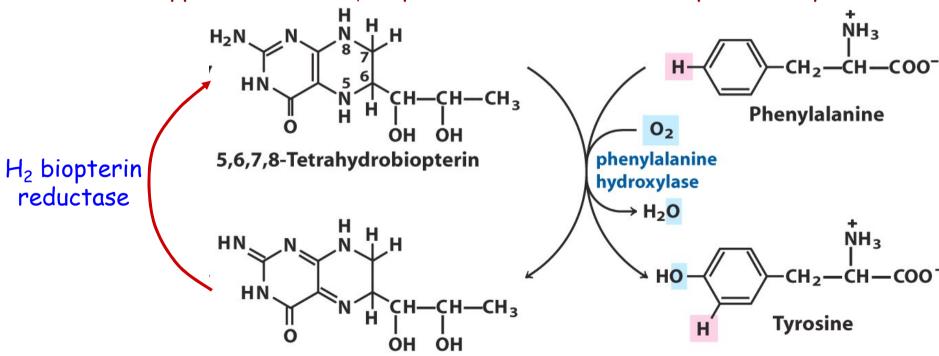
- Build-up of urea cycle intermediates
- Treatments
 - ✓ Strict diet control and supplements of essential a.a.
 - ✓ With the administration of :
 - Aromatic acids (Fig 18-14)
 - Lower NH₄⁺ level in blood
 - Benzoate + Gly + ... → hippurate (left)
 - Phenylbutyrate + Glutamine + ... → phenylacetylglutamine (right)
 - Carbamoyl glutamate (N-acetylglutamate analog)
 - Deficiency of N-acetylglutamate synthase
 - Arginine
 - Deficiency of ornithine transcarbamoylase
 - Deficiency of argininosuccinate synthetase
 - Deficiency of argininosuccinase

Vit B_{12} and folate (p. 691)

Met synthesis in mammal

- \checkmark N⁵-methyl H₄ folate as C donor
 - C is transferred to cobalamin derived from Vit B₁₂
 - Vit B₁₂ as the final C donor
- Vit B₁₂ deficiency
 - ✓ Q: 18-12, 13 and 22-8
 - \checkmark H₄ folate is trapped in N⁵-methyl form
 - ✓ N^5 -methyl H_4 foliate is formed irreversibly (Fig 18-17, top)
 - ✓ Available folate ↓
 - e.g. pernicious anemia
 - Biosynthesis of Gly → porphyrin → Hb




Fig 18-18 left

H₄ biopterin (p. 697)

- Dihydrobiopterin reductase is required to regenerate H₄ biopterin
 - ✓ Defect in dihydrobiopterin (H₂ biopterin) reductase

Fig 18-24

- PKU, norepinephrine, serotonin, L-dopa deficiency, ...
- Supplement with H₄ biopterin, as well as 5-OH-Trp and L-dopa

7,8-Dihydrobiopterin (quinoid form)