

Ch 5 Protein Function

Myoglobin and Hemoglobin Immune system (Antibody) Molecular Motors: Actin and Myosin

Oxygen binding proteins

- 🚽 Myoglobin (Mb)
- O₂ storage
- In muscle tissue
- Mb = monomer
 - 1 x (polypeptide chain + heme)
 - ✓ Mb m.w. = 16.7 kDa

- Hemoglobin (Hb)
- O₂ transport
- Found in erythrocyte
- Hb = tetramer
 - 4 x (polypeptide chain + heme)
 - ✓ Hb m.w. = 64.5 KDa
 - Interactions between subunits

2

 α_1

O₂ binding to Heme

- Heme group to bind O₂
 - \checkmark Heme = organic ring (porphyrin) + Fe²⁺
 - ✓ Free heme → Fe^{2+} (binds O_2) vs. Fe^{3+}
- O₂ rich blood (bright red) vs. O₂ depleted blood (dark purple)
- CO, NO binds with higher affinity than O_2

Protein-ligand interaction
P + L
$$\iff$$
 PL p. 155-156
 $K_{\alpha} = \frac{[PL]}{[P][L]}$ K_{α} : association constant (M⁻¹)
 $K_{\alpha}[L] = \frac{[PL]}{[P]}$
 $\theta = \frac{Binding sites occupied}{Total binding sites} = \frac{[PL]}{[PL] + [P]}$
 $\theta = \frac{[L]}{[L] + 1/K_{\alpha}} = \frac{[L]}{[L] + K_{d}}$ K_{d} : dissociation constant (M)

Ligand binding and K_d

- When [L] = K_d, 50% ligand-binding sites are occupied
- K_d: dissociation constant
- K_d = [L] at half-saturation
- Affinity \uparrow , K_d \downarrow

O₂ binding of Mb

- O₂ binds tightly to Mb
- Good for O₂ storage
- Not good for O₂ transport

Structure affects K_d

	K _d for O ₂	K _d for CO
Free heme	1×	1/20,000x
Heme in Mb	1×	1/200x

Fig 5-5 a and b, p.158

Hb has 2 conformations

O₂ binding to T triggers a conformational change to R

10

Hb-O2 binding curve

- A sigmoid (S-shape) binding curve
- Permit highly sensitive response to small change in pO_2 or [L]

O₂ binding of Mb

- O₂ binds tightly to Mb good for O₂ storage
- Not sensitive to small changes in pO_2 or [L]

O₂ binding to Hb

- Cooperativity (positive)
 - One subunit binding of O₂ affects K_d of the adjacent subunits
 - S-shaped (sigmoid) binding curve multimer only
 - ✓ Hb = $4 \times (\text{subunit} + O_2)$
 - ✓ $1^{st} O_2$ binds Hb (T) weakly, initiate T → R
 - ✓ $2^{nd} O_2$ binds Hb (T→R) with higher affinity
 - ✓ $3^{rd} O_2$ binds Hb (T→R) with even higher affinity
 - ✓ $4^{\text{th}} O_2$ binds Hb (**R**) with highest affinity
- Allosteric protein
 - Homotropic: modulator = ligand (substrate)
 - Heterotropic: modulator ≠ ligand (substrate)

CO intoxication (Box 5-1)

- CO has a higher affinity for Hb
 - ✓ Smoker has higher level of COHb (3~15%) vs. < 1%
 - \checkmark Binding of CO to Hb increase the O₂ affinity of Hb

 $\checkmark O_2$ transport become less efficient (Fig 2)

- Suspected CO intoxication
 - ✓ Rapid evacuation

✓ Administer 100% O₂

Quantification
P + n L
$$\iff$$
 PL_n p.161~164
 $K_a = \frac{[PL_n]}{[P][L]^n}$
 $\theta = \frac{Binding sites occupied}{Total binding sites} = \frac{[L]^n}{[L]^n + K_d}$
 $\frac{\theta}{1 - \theta} = \frac{[L]^n}{K_d}$
 $\log \frac{\theta}{1 - \theta} = n \log [L] - \log K_d$ Hill equation

Hill plot of Mb vs. Hb

Binding mechanisms (I)

- MWC model (concerted)
 - Equilibrium
 - Bind ligand with different affinity
 - ✓ All subunits change at the same time

Binding mechanisms (II)

- Sequential model
 - Subunits change conformation individually
 - More intermediate states

Hb also transports H⁺ and CO₂

$CO_2 + H_2O \implies H^+ + HCO_3^-$

Carbonic anhydrase rich in erythrocytes

- Bohr effect
- pH and CO₂ modulate the affinity of Hb for O₂
 ✓ Tissues: pH ↓ and CO₂↑, O₂ affinity ↓, Hb release O₂
 ✓ Lungs: pH ↑ and CO₂↓, O₂ affinity ↑, Hb binds more O₂

Hb binds H⁺ and CO₂

Hb binds O₂ and (H⁺ or CO₂) with inverse affinity
Hb binds O₂, H⁺, and CO₂ at different sites

BPG (2,3-bisphosphoglycerate)

- BPG binds Hb and reduce the Hb affinity for O₂
- Blood [BPG] ↑ at high altitude
- Sea level vs. high altitude in O_2 saturation curve

BPG in fetal development

- BPG binds to ⊕ a.a. in the cavity between β subunits in Hb (T state)
- BPG stabilize T state $\Rightarrow O_2$ affinity \downarrow
- Fetal Hb needs to have a higher O_2 affinity than mother's Hb

Sickle-cell anemia

- Homozygous allele for the β subunit gene
- Fewer and abnormal erythrocytes: sickle blade
- Due to one a.a. in β chains

A single a.a. substitution

- Hb A (Glu⁶) vs. Hb S (Val⁶) on β subunits surface
- "Sticky" hydrophobic contacts
- deoxyHb S: insoluble and form aggregates

Interaction between molecules

Fig 5-20b, p.169

Natural selection

- Homozygous: anemia, blocked capillaries
- Heterozygous: malaria resistance
- Anemia or Malaria ?

Time?

Fig 5-19, p.168

Summary

O₂ binding protein: Mb and Hb
 Protein-ligand interactions

 Affinity and K_d
 Cooperativity, Hill plot
 Allosteric protein
 Homotropic and heterotropic modulators

 Problems: 1, 3, 4, 5, 6, 7, 8