

How enzymes work?

Sucrose + $O_2 \rightarrow CO_2$ + H_2O + ATP

 $\Delta G < 0$

How long can a box of chocolate last?

All chemical reactions in life are catalyzed by enzymes.

Enzymes

- 1. Catalytic RNA (Ch 26)
- 2. Proteins (in their native conformations)

Enzyme

- = Protein
- = Protein + cofactor (inorganic ions, e.g. Table 6-1)
- = Protein + coenzyme (organic molecules, e.g. Table 6-2)

Tightly bound to Enz. \rightarrow Prosthetic group

<u>Holo</u>enzyme = Apoenzyme + cofactor/coenzyme

Complete, catalytically active

Enzyme classification (p.185)

TABLE 6-3	International Classification of Enzymes				
Class no. Class name		Type of reaction catalyzed			
1	Oxidoreductases	Transfer of electrons (hydride ions or H atoms)			
2	Transferases	Group transfer reactions			
3	Hydrolases	Hydrolysis reactions (transfer of functional groups to water)			
4	Lyases	Addition of groups to double bonds, or formation of double bonds by removal of groups			
5	Isomerases	Transfer of groups within molecules to yield isomeric forms			
6	Ligases	Formation of C—C, C—S, C—O, and C—N bonds by condensation reactions coupled to cleavage of ATP or similar cofactor			

Naming of enzymes

p. 185

- Reactant + -ase
- 6 classes (Table 6.3), based on the reaction type
 - Oxidoreductase, 氧化還原酶, (A⁻ + B → A + B⁺)
 - Transferase, 轉移酶, (A-B + C → A + B-C)
 - Hydrolase, 水解酶, (A-B + H₂O → A-H + B-OH)
 - XY
 - Lyase, 裂解酶, (A-B ← A=B + X-Y) × ∨ ∨ ×
 - Isomerase, 異構酶, (A-B → A-B)
 - Ligase, 接合酶, (synthetase) (A + B _ A-B)

Energy Diagram of a chemical reaction

• Substrate (S) \implies Product (P), no catalyst

Enzymes lowers the activation energy

• $E + S \iff ES \iff EP \iff E + P$, with catalyst E

Catalytic power vs. Specificity

- Enzyme-substrate interaction:
 - "Lock and Key" hypothesis
 - Enzymes are structurally complementary to their substrates
 - Induced-fit hypothesis
 - A conformational change of E is induced by initial binding with S, which optimize the ES interaction
- Which hypothesis makes a good enzyme?

Breaking of a metal stick (I)

Breaking of a metal stick (II)

- With stick *ase*
- An enzyme structurally complementary to substrate (the stick).
- (b) Enzyme complementary to substrate

Fig 6-5b, p.190

- Stabilize the substrate, impede the reaction.
- 10 An useless enzyme !!

Breaking of a metal stick (III)

- With another stick *ase*
- An enzyme structurally complementary to the transition state.

• Stabilize the transition state, allows enzyme to catalyze the reaction.

Role of binding energy (ΔG_B)

- The binding energy (ΔG_B) released results in lowering the activation energy
- ΔG_{B} : from multiple weak E-S interactions
- Results in catalysis and specificity

Enzyme kinetics

- S ⇐ P
- Experiment:
 - [E]: fixed
 - [S]: increasing
 - At beginning, ∆[S] ~ 0, [S] remains unchanged
 - Measure V_o at different [S]
 - V_o = Initial velocity (rate)
 - $V_o = [P]/time$

$[S_0][S_1][S_2][S_3][S_4] \dots$

Fig 6-10, p.194

Enzyme kinetics

• $S \stackrel{E}{\longleftrightarrow} P$, measure

Fig 6-11, p.195

• Results:

Michaelis-Menten equation

At low [S],
$$V_o \propto$$
 [S]

Initial velocity,
$$V_0$$
 (V_{max}
 $At high [S], V_0 = V_{max}$
 $Maximum velocity$
 K_m

Substrate concentration, [S] (mM)
When
$$V_0 = \frac{1}{2} V_{max}$$
, [S] =

K_m

Kinetic model

- [S], V_o , V_{max} , and K_m can be determined by exp.
- Michaelis-Menten kinetics
- Steady-state kinetics
 - Before ES builds up: pre-steady state
 - After [ES] reaches const. : steady state

$$V_0 = \frac{V_{\text{max}}[\mathbf{S}]}{K_{\text{m}} + [\mathbf{S}]}$$

$$E + S \xleftarrow{k_{1}}{k_{-1}} ES \xleftarrow{k_{2}}{k_{-2}} E + P$$
p. 195, (6-7, 6-8)
fast Slow \leftarrow Rate limiting step

Steady-state kinetics (I)

p. 196

 Early in the reaction, [P] is negligible, and k₋₂ is ignored for simplicity:

$$E + S \rightleftharpoons k_1 \longrightarrow ES \rightleftharpoons k_2 \longrightarrow E + P$$
 (6-10)
 $k_{-1} \longrightarrow k_{-2}$

- V_o is determined by the breakdown of ES: $V_o = k_2[ES]$
- At steady-state: [ES] constant
 - Rate of ES formation = Rate of ES breakdown

$$k_{1}[E][S] = k_{-1}[ES] + k_{2}[ES]$$

Steady-state kinetics (II)

p. 196

- Rearrange: $k_1[E_t] [S] = (k_{-1} + k_2)[ES] + k_1[ES][S]$ = $(k_1[S] + k_{-1} + k_2)[ES]$
- Solve for [ES] = $k_1[E_t] [S]/(k_1[S] + k_{-1} + k_2)$ = $[E_t] [S]/([S] + (k_{-1} + k_2)/k_1)$ = $[E_t] [S]/([S] + K_m)$

 $V_o = k_2[ES] = k_2[E_t][S]/([S] + K_m)$

• When $[S] \gg [E], [E_{+}] = [ES], V_{max} = k_2[E_{+}]$

$$V_{o} = \frac{V_{max} [S]}{K_{m} + [S]}$$

K_m, the Michaelis constant

Michaelis-Menten kinetics

- K_m: Michaelis constant
 - The conc. of substrate that will produce $\frac{1}{2}V_{max}$.

Lineweaver-Burk equation

Exercise

A biochemist obtains the following set of data for an enzyme that is known to follow Michaelis-Menten kinetic.

- a) Please make a Michaelis-Menten plot.
- b) Please make a Lineweaver-Burk plot (double reciprocal plot).
- c) V_{max} for the enzyme is _____.
- d) K_m for the enzyme is _____.

Substrate conc.	Initial velocity		
[S], μ Μ	V _o (µmole/min)		
1	49		
2	96		
8	349		
50	621		
100	676		
1,000	698		
5,000	699		

Rate constant: k_{cat}

p. 198

• The limiting rate of any enzyme-catalyzed reaction *at saturation*.

$$E + S \rightleftharpoons k_{1} ES \rightleftharpoons k_{2} E + P \qquad (6-10)$$

$$k_{cat} = k_{2}$$

$$E + S \rightleftharpoons k_1 \longrightarrow ES \rightleftharpoons k_2 \longrightarrow EP \rightleftharpoons k_3 \longrightarrow E + P$$
 (6-25)

$$k_{\rm cat} = k_3$$

$$k_{cat}$$
 = turnover number

p. 199

 $V_{max} = k_{cat}[E_t] \rightarrow Michaelis-Menten equ.$

- First-order rate constant (s⁻¹) in M-M eq.
- Turnover number
 - The number of $S \rightarrow P$ in a given unit of time when the E is saturated with S.

Specificity constant: k_{cat}/K_{m}

p. 199

• The rate constant for E+S \rightarrow E+P.

$$V_{o} = \frac{k_{cat} [E_{t}] [S]}{K_{m} + [S]}$$
 (6-27)

- When $[S] \leftrightarrow K_m$:
 - $V_o \propto [E_t][S] \leftarrow second-order equation$
 - $k_{cat}/K_m \leftarrow$ second-order rate constant (M⁻¹s⁻¹)
 - Used to compare different enzymes
 - Upper limit: 10⁸-10⁹ M⁻¹s⁻¹, diffusion-controlled

Reaction types

- Zero-order reaction (V ~ constant)
- First-order reaction (V \propto [S])
- Second-order reaction (V \propto [S1] and [S2])

Second-order reaction (I)

p. 200

- $A + B \stackrel{E}{\longleftrightarrow} P + Q$ (bi-substrate)
- Single-displacement (sequential) reaction
 - Ternary complex formation
 - Both substrates must bind to the enzyme before any products are released
 - The addition of A and B may be ordered or random, so is the release of products P and Q (Fig 6-13a, 6-14a)

 $A B \downarrow \downarrow \downarrow \\ enz \xrightarrow{>} A - enz - B \xrightarrow{>} P - enz - Q \xrightarrow{>} \xrightarrow{>} enz \downarrow \downarrow P Q$

Compulsory order (Ordered Bi Bi)

↓ Random orderQ (Random Bi Bi)

Second-order reaction (II)

p. 200

- $A + B \stackrel{E}{\longleftrightarrow} P + Q$ (bi-substrate)
- Double-displacement (*ping-pong*) reaction
 - One substrate binds to the enzyme and one product is released before the second substrate binds (no ternary complex formed) (Fig 6-13b, 6-14b)

$$A (\downarrow B (\downarrow P enz \rightarrow P enz \rightarrow P enz \rightarrow enz \rightarrow B enz \rightarrow Q enz \rightarrow enz \rightarrow enz \rightarrow Q enz \rightarrow enz \rightarrow Q enz \rightarrow$$

Bisubstrate reactions

Enzyme and inhibitors

- Irreversible inhibition (p. 203)
 - Inhibitors bind and destroy the active sites
 - e.g. Nerve gas (DIFP) and ACE
 - ACE: <u>acetylcholine</u>sterase, catalyze the hydrolysis of acetylcholine (a neurotransmitter)
 - Chymotrypsin (Fig 6-16)
 - e.g. Asprin and prostaglandin synthet ase
 - Prostaglandin => pain ...
 - Suicide or mechanism-based inactivators
 - Drug design
- Reversible inhibition (p. 201)
 - Competitive
 - Uncompetitive
 - Mixed

Competitive inhibition

- Inhibitor (I) competes with S for the same active site on E to form EI
- I has similar structure as S

Competitive inhibition

In presence of a competitive inhibitor, [E] constant

• V_{max} unchanged, K_m increase

Competitive inhibition

Medical application

Uncompetitive inhibition

- Inhibitor (I) binds to a different site from S
- I binds ES complex to form ESI

Mixed inhibition

- Inhibitor (I) binds a different site from S
- I binds both E and ES
 - Noncompetitive inhibition (a special case)

Non-competitive inhibition

In presence of a non-competitive inhibitor

p.203

- A special case of mixed inhibition
- K_m unchanged, V_{max} decreased

Reversible inhibition

• Competitive, Uncompetitive, Noncompetitive

Table 6-9, p.203

 \bullet Effects of reversible inhibitors on apparent V_{max} and K_m

Inhibitor type	Apparent V _{max}		Apparent K _m	
None	V _{max}		K _m	
Competitive	V _{max}	-	αK_m	Ť
Uncompetitive	$V_{max}/lpha'$	Ļ	K _m /α'	Ļ
Mixed	$V_{max}/lpha'$		$\alpha K_m / \alpha'$	
Non-competitive	V _{max} /α'	Ļ	K _m	- (α=α')

Regulatory enzymes (I), p.220

Regulatory enzymes (II)

- Covalent modification (p. 223...)
 - All-or-none (Fig 6-30)
 - Reversible
 - e.g. phosphorylation/dephosphorylation (Fig 6-35)

Fig 6-35 (1)

Phosphoryl group vs. Enz. activity

- Phosphorylation/dephosphorylation
- kinase/phosphatase Ser¹⁴ Ser¹⁴ OH OH side side CH₂ CH₂ chain chain Phosphorylase b (less active) > 2P: 2ATP phosphorylase phosphorylase phosphatase kinase 2H₂O 2 ADP 4th ed. Fig 6-31 Q `сң₂ Or 5th ed. Fig 6-36, CH, p.224, central part Phosphorylase a (more active)

Glycogen phosphorylase in muscle

Regulatory enzymes (III)

- Polypeptide cleavage (p.226-7)
 - Inactive form \rightarrow active form
 - e.g. chymotrypsinogen \rightarrow chymotrypsin
 - e.g. trypsinogen \rightarrow trypsin
 - Inactive precursor: zymogen, proenzyme, proprotein
 - Irreversible activation \rightarrow inactivated by inhibitors

Summary

- Energetics
- Kinetics
 - Michaelis-Menten equation and plot
 - Lineweaver-Burk equation and plot (double-reciprocal)
 - V_o , V_{max} , K_m , k_{cat} (turnover number), k_{cat}/K_m
 - Reaction type
- Inhibition
 - Reversible [competitive, uncomp., mixed (non-competitive)]
 - Irreversible
- Regulation
 - Allosteric enzyme (homotropic, heterotropic)
 - Covalent modification
 - Polypeptide cleavage
- Problems: 8, 10, 16