

Genomics, Proteomics and Bioinformatics

1

1º

Proteomics, "the original view"

- 2D gel separation \rightarrow MS analysis \rightarrow Protein identification
 - Originated around 1993

2D electrophoresis

Mass Spectroscopy

- Mass/charge (m/z) ratio
 - 1. Ionization
 - MALDI
 - Matrix-assisted laser desorption/ionization
 - ESI
 - Electrospray ionization
 - 2. Separation
 - 3. Activation

intensity

Protein chemistry vs. Proteomics

- Individual proteins
- Complete sequence analysis
- Emphasis on structure and function
- Structural biology

- Complex mixtures
- Partial sequence analysis
- Emphasis on identification by database matching
- Systems biology

The "-omics"

- Redefine how we think about biology and the workings of living systems
 - DNA → genome
 - mRNA → transcriptome
 - Metabolites → metabolome
 - All interactions between biomolecules → interactome
- System biology

Genomics

- Advances in 1990's
- Gene
 - Expressed sequence tag (EST)
 - Sequence database
- Information
 - Public accessible
 - Browser-based, user-friendly bioinformatics tools
- Oligonucleotide microarray (DNA chip)
 - PCR
 - Hybridization of oligonucleotides to complementary sequences

Proteomics

- An analytical challenge !!
- One genome → many proteomes
 - Stability of mRNA
 - Posttranslational modification
 - Turnover rate
 - Regulation
- No protein-equivalent PCR
 - Protein does not replicate
- Proteins do not hybridize to complementary a.a. sequence
 - Ab-Ag

Questions to ask

- What it is ?
 - Molecular function
 - Knockout
- Why is this being done ?
 - Biological process
 Y2H
- Where is this ?
 - Cellular compartment
 - Immunofluorescence

New high-throughput strategies

- What it is ?
 - Random transposon tagging (yeast)
 - Michael Snyder at Yale
 - PCR based (bar code) mutagenesis (yeast)
 - Ron Davis at Standford
 - RNAi (C. elegans)

Transposon

- Mobile pieces of DNA that can hop from one location in the genome to another.
- Jumping gene
- Tn3 derived from *E. coli* used in *Saccharomyces cerevisiae*

- A modified minitransposon (mTn3) by Michael Snyder at Yale
 - Why *lox*?
 - Why a *lac*Z without a promoter and start codon?
 - Why URA3 and tet gene in mTn3?
 - Significance of homologous recombination?

12

The mTn insertion project

- To create mutations:
 - A yeast genomic plasmid library in *E. coli* was randomly mutagenized by mTn insertion
 - Transformants were mated to initiation transposition
 - Transconjugates (tet^R) were mated again to resolve cointegrate structure.
 - The mutated gene is reintroduced to yeast by homologous recombination
 - Replace mTn-mutated gene with *wt* gene
 - In URA3-lacking strain
- Mutated yeast strains were analyzed:
 - Phenotypes
 - Structure-function relationships
 - Differential gene expression
 - Protein localization
- Results:
 - 11,232 strains turned blue

mTn approach to yeast genome

- 92,544 plasmid prep. & yeast transformation
- 11,232 colonies (strains) turned blue
- 6,358 strains sequenced
 - 1,917 different annotated ORFs
 - 328 non-annotated ORFs
 - "gene" = ORFs > 100 codons
- What's next ?

Phenotype macroarrays

- 7,680 mTn-insertion alleles were transformed into a haploid strain
 - 1,082 (14%) inviable \rightarrow essential for viability
 - Phenotype screen: 96 strains x 6 = 576 strains

Array analysis

- Metabolic pathway
 - Oxidative phosphorylation \rightarrow red
 - Alkaline phosphatase + BCLP → blue

Now what ?

- 576 strains, 20 growth conditions
- Data, data, data....
- Look for extremes ?
- Cluster
 - Group together similar patterns
 - Mathematical description
 - Co-expression
 - Standard correlation coefficient
 - Graphical representation
 - Original experimental observation
 - Color: dark and light
 - Visualize and understand the relationships intuitively

http://bioinfo.mbb.yale.edu/genome/phenotypes/

Data analysis

Data clusters

• 20 Growth conditions

Double cluster

- Horizontal cluster: transformants
- Vertical cluster: growth conditions
- Identify assays for functionally related proteins

Growth condition cluster

21

- Clustering growth conditions that result in similar phenotypes
- More effective screening functionally related proteins

Table 1 Phenotypes scored by macroarray analysis			
Assay/growth conditions	Number*	Colour code‡	Abbreviation§
YPD + 8 mM caffeine	27	Purple	Caff
Cycloheximide hypersensitivity: YPD + 0.08 µgmi ⁻¹ cycloheximide at 30 °C	28†	Pink	Cyc ^S
White/red colour on YPD	39	Yellow	W/R
Piglycerol	54	Yellow	YPG
Calcofluor hypersensitivity; YPD + 12 µg ml ⁻¹ calcofluor at 30 °C	Cell wall biogenesis	Purple	Calc ⁵
YPD + 46 μg ml ⁻¹ hygromycin at 30°C		Purple	Hyg
UII 1 YPD + 0.003% SDS	ind maintenance	Purple	SDS
Benomyl hypersensitivity: YPD + 10 µgmi ⁻¹ benomyl	67	Green	Ben ^s
YPD + 5-bromo-4-chloro-3-indolyl phosphate at 37 °C	35	Purple	BCIP
YPD + 0.001% methylene blue at 30 °C	12	Purple	MB
Benomyl resistance: YPD + 20 µgml ⁻¹ benomyl	11†	Green	Ben ^e
YPD at 37 °C	29	Cyan	YPD ³⁷
YPD + 2 mM EGTA	30	Black	EGTA
	16	Pink	MMS
JUNA ITELADUIT	21	Pink	HU
YPD at 11°C	20	Cyan	YPD11
Calcofluor resistance: YPD + 0.3 µgml ⁻¹ calcofluor at 30 °C	4†	Purple	Calc ^R
Cycloheximide resistance: YPD + 0.3 µgml ⁻¹ cycloheximide	2†	Pink	Cyc ⁿ
Hyperhaploid invasive growth mutants	25	Orange	HHIG
YPD + 0.9 M NaCl	13	Black	NaCl

Discovery Questions

• What advantage is there to clustering the phenotypes in this manner?

• Some of the genes identified in this analysis had no known function. How can clustering these data help us predict possible functions?

Cellular location

- HA-tag fusion protein and HA monoclonal Ab
- Immunofluorescence photomicrographs
 - Left: epitope tagged proteins
 - Right: DNA stained with DAPI

Table 2 Observed immunofluorescence patterns for in-frame HAT fusions		
Pattern	Number	
Discrete		
Nuclear		
deneral	41	
granular	64	
nucleolus	22	
Nuclear rim/endoplasmic reticulum	29	
Mitochondrial	37	
Spindle pole body/microtubules	5	
Cell periphery	11	
Cytoplasmic patch/dots	10	
Cell neck	2	
Vacuole	2	
General cytoplasmic		
Uniform, finely speckled	3	
Granular, fibrous	189	
Background	925	
Total	1,340	

*All strains exhibiting discrete cellular or cytoplasmic localizations were tested at least twice. Complete data sets for all tested clones can be accessed at http://ycmi.med.yale.edu/ygac/triples.htm.

http://ygac.med.yale.edu/triples/triples.htm

• TRIPLES

- A database of TRansposon-Insertion Phenotypes, Localization, and Expression in Saccharomyces.
- From a single transposon insertion event, three types of data concerning gene function are generated:

Using transposon-encoded *lacZ* as a reporter, we have performed β -gal filter assays to determine when a given gene is expressed during the yeast life cycle.

Transposon insertion results in truncation of the host gene, enabling us to determine disruption phenotypes on a largescale by macroarray analysis.

The subcellular localization of transposon-tagged proteins has been analyzed using monoclonal antibodies directed against the mTn-encoded HA epitope.