Primers

- 8~10 different primers/ORF
- High-throughput primer synthesis
 - Primer-picking scripts
 - Input:
 - ORF data + UPTAG/DOWN list
 - Output:
 - Primer sequences

- Automated Multiplex Oligonucleotide Synthesizer

- Homology to ORF upstream
- Common tag priming site (U1)
- UPTAG (20 bases)
- Common tag priming site (U2) homologous to 5' to the Kan gene

PCR-based Gene Deletion

• Deletion strategy

Chromosomal integration by homologous recombination

http://www-sequence.stanford.edu/group/yeast_deletion_project/PCR_strategy.html

Results

- 6925 deletion strains of yeast constructed...
 - Essential for viability
 - Lack of human homologs
 - Targets for antifungal drugs
- Screen for genes essential for viability
 - Spores from 2026 ORF (1/3 of the genome) heterozygous strains on YPD media at 30°C
 - 356 haploid deletants could not be recovered
 - 1620 ORFs not essential for viability in yeast
 - Construct one additional homozygous and two haploid deletants
- Statistics
 - 8.5% of the identified non-essential ORFs in the yeast genome have a closely related homolog elsewhere (redundancy)
 - 1% of the essential gene have homologs

Genomic locations

Competitive growth assays

- How to characterize the genes nonessential for viability?
- Pooled functional assay
 - 558 homozygous deletion strains were pooled
 - Grow in rich and minimal media for ~60 generations
 - Remove aliquots from the two pools at various time points
 - Tags were amplified and hybridized to DNA array

Red: grown for 0 hr Green: grown for 6 hr

Normal growth (expression)

Grow slow (reduced expression)

Grow fast (enhanced expression)

Correlation of growth rate

• Where is the wild type ?

Normalized growth rate

- Hybridization intensity = growth rate
 - Normal growth = 1
 - Grown fast (abundant) > 1
 - Grown slow (fewer) < 1

Q:

Predict what might happen if only the slowest growing strains were incubated together.

Whole-genome parallel analysis

- Fitness profiling
 - C source
- Clustering
 - Osmoregulation

Nature 2002 418, 387-391.

Fitness vs. Expression profiling

- H_0 : in a given condition, if a gene expression , then growth .
 - Good fitness \rightarrow good expression
 - Good expression \rightarrow good fitness

Condition	Measured genes	Up*- regulated	Down*- regulated	% Up*-reg. & Fitness defect*	% Down*-reg. & Fitness defect*
Galactose	4682	99	84	6.06	0.00
Alkali	4711	434	464	3.00	3.23
1M NaCl	4711	679	1047	0.88	1.15
1.5 M Sorbitol	4711	588	1024	0.34	0.0

Nature 2002 418, 387-391.

Fitness vs. Expression

Q: (1) Fitness , no \triangle expression. (2) Expression , no \triangle fitness.

Nature 2002 418, 387-391.

10

Comparison

- mTn method
- Pros:
- Cons:

- PCR based method
 - bar code
- Pros:
- Cons:

Completed genome

- Unicellular eukaryotes
 Budding yeast, *Saccharomyces cerevisiae*
- Multicellular eukaryotes
 - Nematode, Caenorhabditis elegans
 - Fruit fly, Drosophila melanogaster

RNAi

- RNA interference by Andy Fire, 1998
- RNAi transiently inhibits the activity of a target gene with a dsRNA

RNAi and C. elegans

- *C. elegans* eats *E. coli* expressing specific dsRNA
- Observe phenotypes of adult and embryo development

Functional Distribution

- Genes on chromosome I of C. elegans
 - Ste: sterile
 - Emb: embryonic phenotype
 - Pep: post-embryonic phenotype
- Basal metabolic process vs. Specialized functions
 - Germline function/embryonic viability
 - Later developmental process
 - Fractions of unknown genes

Fraser et al., 2000 Nature 408, 325-330.

Fraser et al., 2000 Nature 408, 325-330.

Yeast

16

Worm vs. Yeast

• Genes important for viability

 Similar distribution within the different functional classes

	S	Ste	Emb	Unc	Рер
DNA synthesis	1	.2	1.3	0.0	2.2
RNA metabolism	4	.8	11.8	4.7	8.9
Protein metabolism	44	4.6	22.3	7.8	4.4
Energy/metabolism	10	0.8	10.9	6.3	2.2
Chrme dynamics/cell cycle	0	0.0	6.1	0.0	2.2
Cell structure/organisation	18	8.1	15.7	26.6	15.6
Specific transcription	7	.2	4.8	12.5	13.3
Signalling	4	.8	4.8	9.4	8.9
Unknown	7	.2	18.8	31.3	42.2

Comparisons

- The British group
 - Chromosome I
 - Bacterial expressed dsRNA
 - By feeding
 - Viability, and observable phenotypes
- The German group
 - Chromosome III (cell division process)
 - PCR amplified, in vitro transcription ssRNA, annealed to generate dsRNA
 - By microinjection
 - Cell-division process (time-lapse differential interference contrast microscopy)
- RNAi strategy
 - Pros
 - Cons